首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The flagellar apparatus of the zoospores of Tetraedron bitridens Beck-Mannagetta and Chlorotetraedron polymorphum MacEntee, Bold et Archibald includes directly opposed basal bodies, a distal fiber that is elaborated into a ribbed structure to which the continuous striated microtubule-associated component (SMAC) is connected, and partial caps over the proximal end of each basal body. The angle between basal bodies ranges from approximately 25° to 150°. Basal bodies at wider angles are interconnected via their cores. A septum is present in the B-tubule of one basal body triplet in C. polymorphum. Both organisms have four microtubular rootlets arranged in a cruciate pattern. The two X-membered rootlets in a single cell have dissimilar numbers of microtubules. In C. polymorphum there are 5 and 6 microtubules in a 4/1 and 5/1 arrangement. 3/1 and 4/1 rootlets are present in T. bitridens. Zoospores of T. bitridens have a fuzzy coat whereas those of C. polymorphum are naked. Pyrenoids in both species are covered by a continuous starch sheath. Vegetative, interphase cells of C. polymorphum have two centrioles connected by a fiber that are located in depressions in the nuclear envelope. We propose that these two genera may be closely related to Neochloris, and that the coenobial genera Hydrodictyon, Pediastrum and Sorastrum are derived from a Tetraedron-like alga.  相似文献   

2.
Chlorophyll a:b ratios for Chlorella capsulata Guillard, Bold & MacEntee, Chlorosarcinopsis halophila Guillard, Bold,& MacEntee, Nannochloris atomus Butcher and Micromonas pusilla (Butcher) Manton & Parke were found to be 1.74, 2.46, 1.89, and 1.53, respectively. Compared to previously published values in marine planktonic algae, these ratios are similar to the average value (2.17, SD = 1.12) reported for 25 species in 15 genera. Both the new data and previously published data support the hypothesis that marine algae have lower chlorophyll a:b ratios than do other chlorophyll b containing plants.  相似文献   

3.
The fine structure of mitosis and cleavage in Axilosphaera vegetata Cox & Deason, Chlorococcum echinozygotum Starr, Chlorosarcinopsis eremi Chantanachat & Bold, Nautococcus mammilatus Korshikoff, N. terrestris Archibald, N. soluta Archibald, Neospongiococcum solitarium Deason, and Tetracystis aeria Brown & Bold was observed. All possess a phycoplast, but differences in basal body position during mitosis were observed. Nautococcus mammilatus differs from the others as protoplast rotation occurs in many cells prior to cleavage.  相似文献   

4.
A new filamentous bluegreen alga Starria zimbabweënsis gen. nov. et sp. nov. isolated from a soil sample collected near Zimbabwe, Southern Rhodesia, has a unique triradiate morphology. In transverse section each narrow cell possesses three arm-like projections, separated by 120° and in which pigment is concentrated. Filaments may be straight or twisted and various clonable biradiate forms have originated in cultures initiated from the triradiate type. Cell ultra-structure is typical of the Oscillatoriaceae except that 70 nm pit-like pores occur throughout the L-II layer of the longitudinal walls. Wall structure of deviant forms is identical to that of the triradiate “wild type.” The organism is assigned to the Oscillatoriaceae rather than to the Gomontiellaceae or to a new family.  相似文献   

5.
We investigated the similarity of a single Euglena myxocylindracea strain, isolated originally by Bold and MacEntee, to several Euglena geniculata strains on both morphological and DNA levels. We found the three DNA stretches, consisting of fragments coding for the parts of cytoplasmic and chloroplast small subunit rRNA, and the internal transcribed spacer (ITS2) of cytoplasmic rDNA, with the combined length of 4332 nucleotides, are identical in E. myxocylindracea and E. geniculata, strain SAG 1224‐4b. Morphological differences between E. myxocylindracea and any E. geniculata strain examined were well within the range of E. geniculata variability as well. The only difference behind the distinction of E. myxocylindracea from E. geniculata is the presence of the second chloroplast in the latter. However, we were able to induce the appearance of the second chloroplast in the cells of E. myxocylindracea and its disappearance in the cells of E. geniculata by changing the composition of the culture media. We therefore conclude that E. myxocylindracea Bold and MacEntee should be regarded as an environmental form of E. geniculata Dujardin. For the first time the morphology of E. geniculata chloroplasts was shown as revealed by confocal laser microscopy.  相似文献   

6.
Vegetative cells and zoospores of Hormotilopsis gelatinosa Trainor & Bold, H. tetravacuolaris Arce & Bold, Planophila terrestris Groover & Hofstetter, and Phyllogloea fimbriata (Korchikov) Silva were examined by transmission electron microscopy. All cells had pyrenoids traversed by cytoplasmic channels. Zoospores were quadriflagellate and had essentially cruciate flagellar apparatuses. Scales were present on free-swimming zoospores. These features are essentially identical to those of Chaetopeltis sp. and are dissimilar to those of other described green algae. The new order Chaetopeltidales is created to accommodate the genera Chaetopeltis, Hormotilopsis, Planophila sensu Groover & Hofstetter, Phyllogloea, Dicranochaete, and Schizochlamys, organisms previously scattered among the orders Tetrasporales, Chloro-coccales, Chlorosarcinales, and Chaetophorales. Members of the order are closely related to the ancestral chlorophycean flagellate genus Hafniomonas, may be ancestral with respect to other Chlorophyceae, and may also be closely related to the ulvophycean order Ulotrichales.  相似文献   

7.
Critical-point dried (CPD) cells from clonal cultures of Euglena gracilis Klebs (Z strain), E. deses Ehrb., E. tripteris (Duj.) Klebs and E. myxocylindracea Bold & MacEntee were examined by scanning electron microscopy. Flagellated motile cells of E. gracilis are naked except for a few strands of mucilage on the posterior tip. Flagellated cells of E. tripteris have a permanent mucilage coating often of uneven distribution and usually not as well developed as that of nonflagellated creeping cells which have a distinctive mucilage. In E. deses the coating appears rough due to the aggregation of isolated groups of strands above the cell surface. In E. tripteris the coating appears smooth except for breaks near the articulation of the pellicular strips where the mucilage may rise above the surface to form waves. At high magnification this mucilage consists of a network of strands generally lying parallel to the cell surface; the strands become obscure in some specimens. In E. myxocylindracea elongated, mucilage-coated cells contract to form spheres which undergo further mucilage deposition producing the mucilage covering of palmellae. As palmellae mature, the mucilage surface becomes less porous and the individuality of most mucilage strands is lost.  相似文献   

8.
The phylogenetic relationships of two unicellular green algae, Ignatius tetrasporus Bold et MacEntee and Pseudocharacium americanum Lee et Bold were investigated by ultrastructural and molecular methods. The zoospores from both species were covered neither by scales nor cell walls. The flagellar apparatus of the zoospores commonly included these features: the upper basal bodies were displaced counterclockwise in half to two‐thirds of the basal body diameter and did not overlap with each other; the lower basal bodies were directly opposed or slightly displaced clockwise; the distal fiber had gently sigmoid central striations; terminal caps were absent from the ends of the basal bodies; a V‐shaped proximal sheath extended from the upper basal bodies; a posterior fiber lay between the opposite lower basal bodies; and the coarsely striated band linked the sinister rootlet to the lower basal body. The suite of these features was not identical to that of any other quadriflagellate swimming cells, but some features including the lower basal body orientation, the striated distal fiber, and the coarsely striated fiber resemble those of the several organisms of the Siphonocladales sensu Floyd and O’Kelly. Phylogenetic analysis using 18S rDNA sequence data revealed that I. tetrasporus and P. americanum formed a monophyletic clade within the clade of Ulvophyceae sensu López‐Bautista and Chapman, but was not nested within any of the orders of the class that were examined.  相似文献   

9.
Avocado scab was recorded as present in New Zealand in international databases on the basis of one isolate (ICMP 10613) identified by morphological features as Sphaceloma perseae. However, sequence analysis of the rDNA internal transcribed spacer (ITS) region showed that this isolate was dissimilar to the ITS region of other Sphaceloma species, and to S. perseae. By phylogenetic analysis, isolate ICMP 10613 was identified as a species of Phaeosphaeria. To identify S. perseae reliably and quickly, specific polymerase chain reaction (PCR) primers were developed and tested. These PCR primers detected the authentic strain and another strain available from international collections, but did not detect isolate ATCC 11190, or the New Zealand isolate ICMP 10613 which were deposited as S. perseae. No other fungi commonly present in New Zealand avocado orchards were amplified by these primers, nor were three other species of Elsinoë (E. ampelina, E. fawcettii and E. pyri). By phylogenetic analysis of ITS sequence, the atypical isolate ATCC 11190 was identified as Elsinoë araliae, whereas isolate ICMP 10613 was identified as Phaeoseptoria sp. (anamorphic Phaeosphaeria). Re‐examination of the scar symptoms on New Zealand avocado fruit showed they were dissimilar to herbarium specimens of S. perseae from Florida and from Cuba. Leaf symptoms typical of this disease have not been found in New Zealand, and isolations from over 1000 scars on fruit onto selective media yielded no fungi identifiable as S. perseae. These results show that ICMP 10613 was mis‐identified as S. perseae. The record of avocado scab in New Zealand was shown to be incorrect, and there is no evidence that the causal fungus occurs in New Zealand.  相似文献   

10.
Cryptomonads are a ubiquitous and diverse assemblage of aquatic flagellates. The relatively obscure genus Hemiselmis includes some of the smallest of these cells. This genus contained only two species until 1967, when Butcher described seven new marine species mainly on the basis of observations with the light microscope. However, from these seven taxa, only H. amylifera and H. oculata were validly published. Additionally, the features Butcher used to distinguish species have since been questioned, and the taxonomy within Hemiselmis has remained clouded due to the difficulty in unambiguously applying his classification and validating many of his species. As a result, marine strains are often placed into one of three species—H. rufescens Parke, H. virescens Droop, or the invalid H. brunnescens Butcher—based on cell color alone. Here we applied microscopic and molecular tools to 13 publicly available Hemiselmis strains in an effort to clarify species boundaries. SEM failed to provide sufficient morphological variation to distinguish species of Hemiselmis, and results from LM did not correlate with clades found using both molecular phylogenetic and nucleomorph genome karyotype analysis, indicating a high degree of morphological plasticity within species. On the basis of molecular characters and collection geography we recognize four new marine species of HemiselmisH. cryptochromatica sp. nov., H. andersenii sp. nov., H. pacifica sp. nov., and H. tepida sp. nov.—from the waters around North America.  相似文献   

11.
The characteristic sweet-aroma components in refinery final molasses were isolated by using a combination of sensory evaluation, column chromatography and gas chromatography, and were identified by infrared spectrometry, mass spectrometry and color reactions. Identified were ethyl n-hexanoate, ethyl phenylacetate, phenylacetic acid, n-butyl benzoate, isopropyl benzoate, l(+)-pantolactone, benzoic acid, o-toluic acid, m-toluic acid, β-phenylpropionic acid, succinic anhydride, maltol, isomaltol, and 2-methyl-5-hydroxy-6-ethyl-γ-pyrone.

The aroma of the mixture of these compounds and vanillin and vanillic acid was similar to that of refinery molasses by sensory evaluation. The results indicate that these compounds are important in producing of sweet molasses aroma.  相似文献   

12.
A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).  相似文献   

13.
The taxonomic placement of strains belonging to the extremophilic red alga Galdieria maxima has been controversial due to the inconsistent phylogenetic position inferred from molecular phylogenetic analyses. Galdieria maxima nom. inval. was classified in this genus based on morphology and molecular data in the early work, but some subsequent molecular phylogenetic analyses have inferred strains of G. maxima to be closely related to the genus Cyanidioschyzon. To address this controversy, an isolated strain identified as G. maxima using the rbcL gene sequence as the genetic barcode was examined using a comprehensive analysis across morphological, physiological, and genomic traits. Herein are reported the chloroplast-, mitochondrion-, and chromosome-level nuclear genome assemblies. Comparative analysis of orthologous gene clusters and genome arrangements suggested that the genome structure of this strain was more similar to that of the generitype of Cyanidioschyzon, C. merolae than to the generitype of Galdieria, G. sulphuraria. While the ability to uptake various forms of organic carbon for growth is an important physiological trait of Galdieria, this strain was identified as an ecologically obligate photoautotroph (i.e., the inability to utilize the natural concentrations of organic carbons) and lacked various gene models predicted as sugar transporters. Based on the genomic, morphological, and physiological traits, we propose this strain to be a new genus and species, Cyanidiococcus yangmingshanensis. Re-evaluation of the 18S rRNA and rbcL gene sequences of the authentic strain of G. maxima, IPPAS-P507, with those of C. yangmingshanensis suggests that the rbcL sequences of “G. maxima” deposited in GenBank correspond to misidentified isolates.  相似文献   

14.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

15.
Bipolar asymmetry has been considered a morphological characteristic sufficient for differentiation of genera among the Desmidiaceae. Therefore, Micrasterias sudanensis Grönbl., Prowse & Scott, the only species of Micrasterias showing such asymmetry, is made the type of a new genus, Prescottiella, gen. nov.  相似文献   

16.
Based upon COI‐5P, LSU rDNA, and rbcL sequence data and morphological characteristics, six new members of the noncalcified crustose genus of red algae Ethelia are described in a new family, Etheliaceae (Gigartinales), sister to the recently described Ptilocladiopsidaceae. The novel species are described from subtropical to tropical Atlantic and Indo‐Pacific Ocean basins; E. mucronata sp. nov. and E. denizotii sp. nov. from southern and northern Western Australia respectively, E. wilcei sp. nov. from the Cocos (Keeling) Islands of Australia, E. suluensis sp. nov. from the Philippines, E. umbricola sp. nov. from Bermuda and E. kraftii sp. nov. from Lord Howe Island, Australia. The generitype, Ethelia biradiata, originally reported from the Seychelles, Indian Ocean, is added to the Western Australian flora.  相似文献   

17.
Cryptonemia specimens collected in Bermuda over the past two decades were analysed using gene sequences encoding the large subunit of the nuclear ribosomal DNA and the large subunit of RuBisCO as genetic markers to elucidate their phylogenetic positions. They were additionally subjected to morphological assessment and compared with historical collections from the islands. Six species are presently found in the flora including C. bermudensis comb. nov., based on Halymenia bermudensis, and the following five new species: C. abyssalis, C. antricola, C. atrocostalis, C. lacunicola and C. perparva. Of the eight species known in the western Atlantic flora prior to this study, none is found in Bermuda. Specimens reported in the islands in the 1900s attributed to C. crenulata and C. luxurians are representative of the new species, C. antricola and C. atrocostalis, respectively.  相似文献   

18.
19.
On the basis of LM, we isolated strains of two species of fusiform green flagellates that could be assigned to former Chlorogonium (Cg.) Ehrenb. One species, “Cg.”heimii Bourr., lacked a pyrenoid in its vegetative cells and required organic compounds for growth. The other was similar to Cg. elongatum (P. A. Dang.) Francé and “Cg.”acus Nayal, but with slightly smaller vegetative cells. Their molecular phylogeny was also studied based on combined 18S rRNA, RUBISCO LSU (rbcL), and P700 chl a‐apoprotein A2 (psaB) gene sequences. Both species were separated from Chlorogonium emend., Gungnir Nakada and Rusalka Nakada, which were formerly assigned to Chlorogonium. They were accordingly assigned to new genera, Tabris Nakada gen. nov. and Hamakko (Hk.) Nakada gen. nov. as T. heimii (Bourr.) Nakada comb. nov. and Hk. caudatus Nakada sp. nov., respectively. Tabris is differentiated from other genera of fusiform green flagellates by its vegetative cells, which only have two apical contractile vacuoles and lack a pyrenoid in the chloroplast. Hamakko, on the other hand, is distinguishable by the fact that its pyrenoids in vegetative cells are penetrated by flattened thylakoid lamellae.  相似文献   

20.
Isolates AH11T and AH13T were isolated from flowers of lantana and candle bush respectively collected in Thailand. In phylogenetic trees based on 16S rRNA gene sequences, the two isolates formed an independent cluster, which was then connected to the type strain of Saccharibacter floricola. The calculated pair-wise 16S rRNA gene sequence similarities of isolate AH11T were 95.7–92.3% to the type strains of the type species of the 12 genera of acetic acid bacteria. The DNA base composition was from 51.2 to 56.8 mol % G+C, with a range of 5.6 mol %. When isolate AH11T was labeled, DNA-DNA similarities were 100, 12, 4, 5, and 4% respectively to isolates AH11T and AH13T and the type strains of Saccharibacter floricola, Gluconobacter oxydans, and Acetobacter aceti. The two isolates were non-motile and did not oxidize either acetate or lactate. No growth was found in the presence of 0.35% acetic acid w/v. The two isolates were not osmophilic but osmotolerant, produced 2,5-diketo-D-gluconate from D-glucose, and did not oxidize lactate, thus differing from strains of Saccharibacter floricola, which showed weak lactate oxidation. The two isolates contained unsaturated C18:1ω7c fatty acid as the major fatty acid, and were unique in the presence of a considerable amount of straight-chain C18:12OH fatty acid. Q-10 was present as the major isoprenoid quinone. Neokomagataea gen. nov. was proposed with the two species, Neokomagataea thailandica sp. nov. for isolate AH11T (=BCC 25710 T =NBRC 106555T), which has 56.8 mol % G+C, and Neokomagataea tanensis sp. nov. for isolate AH13T (=BCC 25711T=NBRC 106556T), which has 51.2 mol % G+C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号