首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRELP (proline arginine-rich end leucine-rich repeat protein) is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also, recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nm as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.  相似文献   

2.
Smooth muscle cell proliferation can be inhibited by heparan sulfate proteoglycans whereas the removal or digestion of heparan sulfate from perlecan promotes their proliferation. In this study we characterized the glycosaminoglycan side chains of perlecan isolated from either primary human coronary artery smooth muscle or endothelial cells and determined their roles in mediating cell adhesion and proliferation, and in fibroblast growth factor (FGF) binding and signaling. Smooth muscle cell perlecan was decorated with both heparan sulfate and chondroitin sulfate, whereas endothelial perlecan contained exclusively heparan sulfate chains. Smooth muscle cells bound to the protein core of perlecan only when the glycosaminoglycans were removed, and this binding involved a novel site in domain III as well as domain V/endorepellin and the α2β1 integrin. In contrast, endothelial cells adhered to the protein core of perlecan in the presence of glycosaminoglycans. Smooth muscle cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains and promoted the signaling of FGF2 but not FGF1. Also endothelial cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains, but in contrast, promoted the signaling of both growth factors. Based on this differential bioactivity, we propose that perlecan synthesized by smooth muscle cells differs from that synthesized by endothelial cells by possessing different signaling capabilities, primarily, but not exclusively, due to a differential glycanation. The end result is a differential modulation of cell adhesion, proliferation and growth factor signaling in these two key cellular constituents of blood vessels.  相似文献   

3.
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (> 200 nm) and oldest (> 550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II–V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.  相似文献   

4.
Agrin is a large extracellular matrix protein that plays a key role in the formation and maintenance of the vertebrate neuromuscular junction. The amino acid sequence of agrin encodes a protein with a molecular size of 220 kDa, whereas SDS-PAGE shows a diffuse band around 400 kDa. Further studies showed that agrin is highly glycosylated and belongs to the family of heparan sulfate proteoglycans. By expressing different protein fragments, we localized the glycosaminoglycan (GAG) attachment sites to two locations within the agrin molecule. One site that is located between the seventh and eight follistatin-like domain includes 3 closely spaced serine-glycine (SG) consensus sequences and carries exclusively heparan sulfate side chains. The second site is located further downstream in the centrally located serine-threonine-rich domain and contains a cluster of 4 closely packed SG consensus sequences. This site predominantly carries chondroitin sulfate side chains. Investigating the contribution of individual serines in GAG priming by site-directed mutagenesis showed that each serine of the two SG clusters has the potential to carry GAGs. In accordance with the mixed GAG glycosylation of agrin peptide fragments, it was found that recombinant and in vivo-derived full-length agrin are not exclusively heparan sulfate proteoglycans but also carry chondroitin sulfate side chains.  相似文献   

5.
Biglycan is a member of the small leucine-rich proteoglycan family. Its core protein comprises two chondroitin/dermatan sulfate attachment sites on serine 42 and serine 47, respectively, which are the fifth and tenth amino acid residues, respectively, after removal of the prepro peptide. Because the regulation of glycosaminoglycan chain assembly is not fully understood and because of the in vivo existence of monoglycanated biglycan, mutant core proteins were stably expressed in human 293 and Chinese hamster ovary cells in which i) either one or both serine residues were converted into alanine or threonine residues, ii) the number of acidic amino acids N-terminal of the respective serine residues was altered, and iii) a hexapeptide was inserted between the mutated site 1 and the unaltered site 2. Labeling experiments with [(35)S]sulfate and [(35)S]methionine indicated that serine 42 was almost fully used as the glycosaminoglycan attachment site regardless of whether site 2 was available or not for chain assembly. In contrast, substitution of site 2 was greatly influenced by the presence or absence of serine 42, although additional mutations demonstrated a direct influence of the amino acid sequence between the two sites. When site 2 was not substituted with a glycosaminoglycan chain, there was also no assembly of the linkage region. These results indicate that xylosyltransferase is the rate-limiting enzyme in glycosaminoglycan chain assembly and implicate a cooperative effect on the xylosyl transfer to site 2 by xylosylation of site 1, which probably becomes manifest before the removal of the propeptide. It is shown additionally that biglycan expressed in 293 cells may still contain the propeptide sequence and may carry heparan sulfate chains as well as sulfated N-linked oligosaccharides.  相似文献   

6.
L-selectin is a C-type lectin expressed on leukocytes that is involved in both lymphocyte homing to the lymph node and leukocyte extravasation during inflammation. Known L-selectin ligands include sulfated Lewis-type carbohydrates, glycolipids, and proteoglycans. Previously, we have shown that in situ detection of different types of L-selectin ligands is highly dependent on the tissue fixation protocol used. Here we use this knowledge to specifically examine the expression of L-selectin binding proteoglycans in normal mouse tissues. We show that L-selectin binding chondroitin/dermatan sulfate proteoglycans are present in cartilage, whereas L-selectin binding heparan sulfate proteoglycans are present in spleen and kidney. Furthermore, we show that L-selectin only binds a subset of renal heparan sulfates, attached to a collagen type XVIII protein backbone and predominantly present in medullary tubular and vascular basement membranes. As L-selectin does not bind other renal heparan sulfate proteoglycans such as perlecan, agrin, and syndecan-4, and not all collagen type XVIII expressed in the kidney binds L-selectin, this indicates that there is a specific L-selectin binding domain on heparan sulfate glycosaminoglycan chains. Using an in vitro L-selectin binding assay, we studied the contribution of N-sulfation, O-sulfation, C5-epimerization, unsubstituted glucosamine residues, and chain length in L-selectin binding to heparan sulfate/heparin glycosaminoglycan chains. Based on our results and the accepted model of heparan sulfate domain organization, we propose a model for the interaction of L-selectin with heparan sulfate glycosaminoglycan chains. Interestingly, this opens the possibility of active regulation of L-selectin binding to heparan sulfate proteoglycans, e.g. under inflammatory conditions.  相似文献   

7.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

8.
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product.  相似文献   

9.
Perlecan is a highly conserved heparan sulfate proteoglycan in cartilage and basement membranes. We identified chick perlecan and a 90 KD perlecan fragment in vivo using a newly generated monoclonal antibody. Chick perlecan is, like its human and mouse homologue, a hybrid heparan sulfate/chondroitin sulfate proteoglycan with a core protein of 400 KD. Analysis of the 90 KD fragment by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and Capillary LC nano Electrospray Ionization tandem MS (LC nano ESI MS/MS) showed that it belonged to domain IV of the perlecan core protein. We found that full-length perlecan and its domain IV fragment are abundant in embryonic vitreous body and serum. Their expression in vitreous and serum is greatly down-regulated shortly after hatching of the chick. We speculate that the abundance of perlecan in the embryonic circulation and vitreous reflects the ongoing formation of new BMs in the expanding vascular system and the growing retina. In addition, we found that perlecan as a substrate does not support, rather inhibits neurite outgrowth.  相似文献   

10.
Collagen XVIII is the only currently known collagen that carries heparan sulfate glycosaminoglycan side chains. The number and location of the glycosaminoglycan attachment sites in the core protein were determined by eukaryotic expression of full-length chick collagen XVIII and site-directed mutagenesis. Three Ser-Gly consensus sequences carrying glycosaminoglycan side chains were detected in the middle and N-terminal part of the core protein. One of the Ser-Gly consensus sequences carried a heparan sulfate side chain, and the remaining two had mixed chondroitin and heparan sulfate side chains; thus, recombinant collagen XVIII was a hybrid of heparan sulfate and chondroitin proteoglycan. In contrast, collagen XVIII from all chick tissues so far assayed have exclusively heparan sulfate side chains, indicating that the posttranslational modification of proteins expressed in vitro is not entirely identical to the processing that occurs in a living embryo. Incubating the various mutated collagen XVIIIs with retinal basement membranes showed that the heparan sulfate glycosaminoglycan side chains mediate the binding of collagen XVIII to basement membranes.  相似文献   

11.
Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia.  相似文献   

12.
Chondroitin sulfate and dermatan sulfate proteoglycans are distinguished by differences in their proportion of d-glucuronosyl and l-iduronosyl residues, the latter being formed by chondroitin-glucuronate 5-epimerase during or after glycosaminoglycan chain polymerization. To investigate the influence of the core protein on the extent of epimerization, we expressed chimeric proteins in 293 HEK cells constructed from intact or modified Met(1)-Gln(153) of decorin (DCN), which normally has a single dermatan sulfate chain at Ser(34), in combination with intact or modified Leu(241)-Ser(353) of CSF-1, which has a chondroitin sulfate attachment site at Ser(309). Transfected DCN(M1-Q153), like full-length DCN, contained approximately 20% l-iduronate. Conversely, transfected CSF-1(L241-S353), attached C-terminally on the DCN prepropeptide, contained almost exclusively d-glucuronate. Transfected intact chimeric DCN(M1-Q153)-CSF-1(L241-S353), with two glycosaminoglycan chains, also contained almost exclusively d-glucuronate in chains at both sites, as did chimeras in which alanine was substituted for serine at either of the glycosaminoglycan attachment sites. Nevertheless, undersulfated intact chimeric proteoglycan was an effective substrate for epimerization of glucuronate to iduronate residues when incubated with microsomal proteins and 3'-phosphoadenylylphosphosulfate. C-terminal truncation constructs were prepared from the full-length chimera with an alanine substitution at the CSF-1 glycosaminoglycan attachment site. Transfected truncations retaining the alanine-blocked site contained chains with essentially only glucuronate, whereas those further truncated by 49 or more amino acids and missing the modified attachment site contained chains with approximately 15% iduronate. This 49-amino acid region contains a 7-amino acid motif that appears to be conserved in several chondroitin sulfate proteoglycans. The results are consistent with a model in which the core protein, possibly via this motif, is responsible for routing to subcellular compartments with or without sufficient access to chondroitin-glucuronate 5-epimerase for the addition of chains with or without iduronate residues, respectively.  相似文献   

13.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

14.
Heparan sulfate proteoglycans are thought to mediate the action of growth factors. The heparan sulfate-containing proteoglycans in extracts of the bovine fetal rib growth plate were detected using the monoclonal antibody 3G10, which recognizes a neoepitope generated by heparitinase digestion (David, G., Bai, X. M., Van der Schueren, B., Cassiman, J. J., and Van den Berghe, H. (1992) J. Cell Biol. 119, 961-975). The heparan sulfate proteoglycans that react with this antibody were identified using antisera to known proteoglycans; purified using CsCl density gradient centrifugation, molecular sieve, and ion exchange chromatography; and then characterized. The major heparan sulfate proteoglycans in the growth plate had core proteins of 200 kDa and larger and were identified as perlecan and aggrecan. These two heparan sulfate proteoglycans could be effectively separated from each other by CsCl density gradient centrifugation alone. Perlecan contained 25% heparan sulfate and 75% chondroitin sulfate. The heparan sulfate chains on growth plate perlecan were considerably smaller than the chondroitin sulfate chains, and the heparan sulfate disaccharide content was different than that found for heparan sulfate from either kidney, tumor tissue, or growth plate aggrecan. Aggrecan contained only 0.1% heparan sulfate, which was localized to the CS-1 domain of aggrecan. These results indicate that perlecan and aggrecan would be the principal candidate proteoglycans involved in the action of heparan sulfate-binding proteins in the developing growth plate.  相似文献   

15.
Fibroblast growth factor-18 (FGF-18) has been shown to regulate the growth plate chondrocyte proliferation, hypertrophy and cartilage vascularization necessary for endochondral ossification. The heparan sulfate proteoglycan perlecan is also critical for growth plate chondrocyte proliferation. FGF-18 null mice exhibit a skeletal dwarfism similar to that of perlecan null mice. Growth plate perlecan contains chondroitin sulfate (CS) and heparan sulfate (HS) chains and FGF-18 is known to bind to heparin and to heparan sulfate from some sources. We used cationic filtration and immunoprecipitation assays to investigate the binding of FGF-18 to perlecan purified from the growth plate and to recombinant perlecan domains expressed in COS-7 cells. FGF-18 bound to perlecan with a Kd of 145 nM. Near saturation, ∼103 molecules of FGF-18 bound per molecule of perlecan. At the lower concentrations used, FGF-18 bound with a Kd of 27.8 nM. This binding was not significantly altered by chondroitinase nor heparitinase digestion of perlecan, but was substantially and significantly reduced by reduction and alkylation of the perlecan core protein. This indicates that the perlecan core protein (and not the CS nor HS chains) is involved in FGF-18 binding. FGF-18 bound equally to full-length perlecan purified from the growth plate and to recombinant domains I-III and III of perlecan. These data indicate that low affinity binding sites for FGF-18 are present in cysteine-rich regions of domain III of perlecan. FGF-18 stimulated 3H-thymidine incorporation in growth plate chondrocyte cultures derived from the lower and upper proliferating zones by 9- and 14-fold, respectively. The addition of perlecan reversed this increased incorporation in the lower proliferating chondrocytes by 74% and in the upper proliferating cells by 37%. These results suggest that perlecan can bind FGF-18 and alter the mitogenic effect of FGF-18 on growth plate chondrocytes.  相似文献   

16.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

17.
The effect of nitrophenyl-beta-D-xyloside (xyloside), a synthetic initiator of glycosaminoglycan synthesis, on proteoglycan and glycosaminoglycan synthesis by a basement membrane producing tumor was studied. While xyloside markedly stimulated the formation of chondroitin sulfate chains, it depressed the formation of a basement membrane heparan sulfate proteoglycan and caused only little formation of free heparan sulfate chains. However, when the synthesis of the core protein of the proteoglycan was inhibited by cycloheximide, heparan sulfate chains were produced by xyloside treatment. These heparan sulfate chains had a sulfate content higher than that of heparan sulfate found on the proteoglycan. The data indicate that xyloside can substitute for the heparan sulfate initiation site on the core protein of the proteoglycan and that this initiation is enhanced in the absence of core protein. This suggests that under normal conditions the formation of heparan sulfate chains may be tightly linked to the production of the core protein.  相似文献   

18.
The potent oxidants hypochlorous acid (HOCl) and hypobromous acid (HOBr) are produced extracellularly by myeloperoxidase, following release of this enzyme from activated leukocytes. The subendothelial extracellular matrix is a key site for deposition of myeloperoxidase and damage by myeloperoxidase-derived oxidants, with this damage implicated in the impairment of vascular cell function during acute inflammatory responses and chronic inflammatory diseases such as atherosclerosis. The heparan sulfate proteoglycan perlecan, a key component of the subendothelial extracellular matrix, regulates important cellular processes and is a potential target for HOCl and HOBr. It is shown here that perlecan binds myeloperoxidase via its heparan sulfate side chains and that this enhances oxidative damage by myeloperoxidase-derived HOCl and HOBr. This damage involved selective degradation of the perlecan protein core without detectable alteration of its heparan sulfate side chains, despite the presence of reactive GlcNH2 residing within this glycosaminoglycan. Modification of the protein core by HOCl and HOBr (measured by loss of immunological recognition of native protein epitopes and the appearance of oxidatively-modified protein epitopes) was associated with an impairment of its ability to support endothelial cell adhesion, with this observed at a pathologically-achievable oxidant dose of 425 nmol oxidant/mg protein. In contrast, the heparan sulfate chains of HOCl/HOBr-modified perlecan retained their ability to bind FGF-2 and collagen V and were able to promote FGF-2-dependent cellular proliferation. Collectively, these data highlight the potential role of perlecan oxidation, and consequent deregulation of cell function, in vascular injuries by myeloperoxidase-derived HOCl and HOBr.  相似文献   

19.
Knox S  Fosang AJ  Last K  Melrose J  Whitelock J 《FEBS letters》2005,579(22):5019-5023
Perlecan is a multidomain proteoglycan, usually substituted with heparan sulphate (HS), and sometimes substituted with both HS and chondroitin sulphate (CS). In this paper, we describe perlecan purified from HEK-293 cells substituted with HS, CS and keratan sulphate (KS). KS substitution was confirmed by immunoreactivity with antibody 5D4, sensitivity to keratanase treatment, and fluorophore-assisted carbohydrate electrophoresis. HEK-293 perlecan failed to promote FGF-dependent cell growth in an in vitro assay. This study is the first to report perlecan containing KS, and makes perlecan one of only a very few proteoglycans substituted with three distinct types of glycosaminoglycan chains.  相似文献   

20.
A heparan sulfate proteoglycan is a component of all basement membranes. This molecule consists of three heparan sulfate side chains linked to a large core protein of approximately 400 kDa. We have isolated seven overlapping murine cDNA clones that encode the entire mRNA sequence of 12.685 kilobases of this molecule. This sequence has a single open reading frame of 3,707 amino acids that encodes for a protein of 396 kDa. Identical or near identical matchups with nine peptide sequences derived from the core protein of the molecule isolated from the Engelbreth-Holm-Swarm tumor were found with the deduced sequence. Sequence analysis and data base comparison of the deduced sequence show the protein to consist of five different domains, most of which contain internal repeats. Domain I contains a start methionine followed by a typical signal transfer sequence and a unique segment of 172 amino acids that contains the three probable sites of heparan sulfate attachment, SGD. Domain II contains four cysteine- and acidic amino acid-rich repeats that are very similar to those found in the LDL receptor and proteins such as GP330. Domain III consists of cysteine-rich and globular regions, both of which show similarity to those in the short arm of the laminin A chain. Domain IV contains 14 repeats of the immunoglobulin superfamily that are most highly similar to the immunoglobulin-like repeats in the neural cell adhesion molecule. Domain V contains three repeats with similarity to the laminin A chain G domain that are separated by epidermal growth factor-like regions not found in the laminin A chain. As the primary structural data agree with the appearance of the molecule in the electron microscope as a series of globules separated by rods, or "beads on a string," we have adopted the name perlecan for this molecule. The variety of domains in perlecan suggest multiple interactions with other molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号