共查询到20条相似文献,搜索用时 15 毫秒
1.
Jing Gao Hiroshi Takeuchi Hisanori Umebayashi Zhao Zhang Miho Matsuda Masato Hirata 《Advances in enzyme regulation》2010,50(1):237-246
Exocytosis plays an essential role in fundamental cellular events by secreting neurotransmitters, hormones, and cytokines. Although the minimal molecular components termed SNARE that govern membrane fusion have been identified, the precise mechanisms behind the finely-tuned regulation of exocytosis executed by many molecules in addition to the actions of SNARE remain to be fully identified. Here, we evaluated a model system for assaying catecholamine secretion from permeabilized rat pheochromocytoma PC12 cells, in which the structural integrity required was preserved adequately. Among several chemical reagents used for the cell permeabilization and freezing-thawing procedures, the treatment of cells with digitonin at concentrations of 7.5–15 μM was most suitable for the secretion assay, as it was considered to cause mild disruption of the plasma membrane, enabling free access to small molecules such as Ca2+ and ATP to the minimal membrane fusion machinery. No additional cytosolic proteins were required to reconstitute the secretion. In this assay model, ATP was necessary to maintain the priming state before Ca2+-triggered exocytosis but was not required for the Ca2+-triggered membrane fusion process itself. The present study provides a useful cell model for exploring novel molecules that may be implicated in exocytosis such as those playing regulatory roles in addition to the “minimal membrane fusion machinery for exocytosis”, which does not require any additional special apparatus. 相似文献
2.
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin. 相似文献
3.
Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: Hierarchy of Rab27A effectors
Fukuda M 《Biochemical and biophysical research communications》2006,343(2):666-674
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes. 相似文献
4.
Chavas LM Ihara K Kawasaki M Torii S Uejima T Kato R Izumi T Wakatsuki S 《Structure (London, England : 1993)》2008,16(10):1468-1477
Rab GTPases coordinate vesicular trafficking within eukaryotic cells by collaborating with a set of effector proteins. Rab27a regulates numerous exocytotic pathways, and its dysfunction causes the Griscelli syndrome human immunodeficiency. Exophilin4/Slp2-a localizes on phosphatidylserine-enriched plasma membrane, and its N-terminal Rab27-binding domain (RBD27) specifically recognizes Rab27 on the surfaces of melanosomes and secretory granules prior to docking and fusion. To characterize the selective binding of Rab27 to 11 various effectors, we have determined the 1.8 A resolution structure of Rab27a in complex with Exophilin4 RBD27. The effector packs against the switch and interswitch elements of Rab27a, and specific affinity toward Rab27a is modulated by a shift in the orientation of the effector structural motif (S/T)(G/L)xW(F/Y)(2). The observed structural complementation between the interacting surfaces of Rab27a and Exophilin4 sheds light on the disparities among the Rab27 effectors and outlines a general mechanism for their recruitment. 相似文献
5.
The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules 总被引:1,自引:0,他引:1
下载免费PDF全文

Yi Z Yokota H Torii S Aoki T Hosaka M Zhao S Takata K Takeuchi T Izumi T 《Molecular and cellular biology》2002,22(6):1858-1867
Recently, we identified and characterized a novel protein, granuphilin, whose domain structure is similar to that of the Rab3 effector protein rabphilin3 (J. Wang, T. Takeuchi, H. Yokota, and T. Izumi, J. Biol. Chem. 274:28542-28548, 1999). Screening its possible Rab partner by a yeast two-hybrid system revealed that an amino-terminal zinc-finger domain of granuphilin interacts with Rab27a. Granuphilin preferentially bound to the GTP form of Rab27a. Formation of the Rab27a/granuphilin complex was readily detected in the pancreatic beta cell line MIN6. Moreover, the tissue distributions of Rab27a and granuphilin are remarkably similar: both had significant and specific expression in pancreatic islets and in pituitary tissue, but no expression was noted in the brain. Analyses by immunofluorescence, immunoelectron microscopy, and sucrose density gradient subcellular fractionation showed that Rab27a and granuphilin are localized on the membrane of insulin granules. These findings suggest that granuphilin functions as a Rab27a effector protein in beta cells. Overexpression of wild-type Rab27a and its GTPase-deficient mutant significantly enhanced high K(+)-induced insulin secretion without affecting basal insulin release. Although Rab3a, another exocytotic Rab protein, has some similarities with Rab27a in primary sequence, intracellular distribution, and affinity toward granuphilin, overexpression of Rab3a caused different effects on insulin secretion. These results indicate that Rab27a is involved in the regulated exocytosis of conventional dense-core granules possibly through the interaction with granuphilin, in addition to its recently identified role in lysosome-related organelles. 相似文献
6.
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane. 相似文献
7.
The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex
下载免费PDF全文

Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane. 相似文献
8.
Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells 总被引:4,自引:0,他引:4
Synaptotagmins (Syts) III, V, VI, and X are classified as a subclass of Syt, based on their sequence similarities and biochemical properties (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273; Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Although they have been suggested to be involved in vesicular trafficking, as in the role of the Syt I isoform in synaptic vesicle exocytosis, their exact functions remain to be clarified, and even their precise subcellular localization is still a matter of controversy. In this study, we established rat pheochromocytoma (PC12) cell lines that stably express Syts III-, V-, VI-, and X-GFP (green fluorescence protein) fusion proteins, respectively, to determine their precise subcellular localizations. Surprisingly, Syts III-, V-, VI-, and X-GFP proteins were found to be targeted to specific organelles: Syt III-GFP to near the plasma membrane, Syt V-GFP to dense-core vesicles, Syt VI-GFP to endoplasmic reticulum-like structures, and Syt X-GFP to vesicles (other than dense-core vesicles) present in cytoplasm. We showed that Syt V-containing vesicles at the neurites of PC12 cells were processed to exocytosis in a Ca2+-dependent manner. Immunohistochemical analysis further showed that endogenous Syt V was also localized on dense-core vesicles in the mouse brain and specifically expressed in glucagon-positive alpha-cells in mouse pancreatic islets, but not in beta- or delta-cells. Based on these results, we propose that Syt V is a dense-core vesicle-specific Syt isoform that controls a specific type of Ca2+-regulated secretion. 相似文献
9.
Yi Sun Tim T. Chiu Kevin P. Foley Philip J. Bilan Amira Klip 《Molecular biology of the cell》2014,25(7):1159-1170
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase–dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)–MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP–MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP–MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA–mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane. 相似文献
10.
11.
EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin
下载免费PDF全文

Rüder C Reimer T Delgado-Martinez I Hermosilla R Engelsberg A Nehring R Dörken B Rehm A 《Molecular biology of the cell》2005,16(3):1245-1257
Regulated exocytosis is subject to several modulatory steps that include phosphorylation events and transient protein-protein interactions. The estrogen receptor-binding fragment-associated gene9 (EBAG9) gene product was recently identified as a modulator of tumor-associated O-linked glycan expression in nonneuronal cells; however, this molecule is expressed physiologically in essentially all mammalian tissues. Particular interest has developed toward this molecule because in some human tumor entities high expression levels correlated with clinical prognosis. To gain insight into the cellular function of EBAG9, we scored for interaction partners by using the yeast two-hybrid system. Here, we demonstrate that EBAG9 interacts with Snapin, which is likely to be a modulator of Synaptotagmin-associated regulated exocytosis. Strengthening of this interaction inhibited regulated secretion of neuropeptide Y from PC12 cells, whereas evoked neurotransmitter release from hippocampal neurons remained unaltered. Mechanistically, EBAG9 decreased phosphorylation of Snapin; subsequently, association of Snapin with synaptosome-associated protein of 25 kDa (SNAP25) and SNAP23 was diminished. We suggest that the occurrence of SNAP23, Snapin, and EBAG9 also in nonneuronal cells might extend the modulatory role of EBAG9 to a broad range of secretory cells. The conjunction between EBAG9 and Snapin adds an additional layer of control on exocytosis processes; in addition, mechanistic evidence is provided that inhibition of phosphorylation has a regulatory function in exocytosis. 相似文献
12.
Watanabe T Fujiwara T Komazaki S Yamaguchi K Tajima O Akagawa K 《Journal of biochemistry》1999,125(4):685-689
The membrane protein syntaxin (originally named HPC-1) is involved in vesicle trafficking and required for neurotransmitter release at nerve terminals. The presence of syntaxin on target membranes is hypothesized to confer specificity to targeting and fusion via interactions with complementary vesicle-associated proteins. To elucidate the function of syntaxin 1A in exocytosis, HPC-1/syntaxin 1A-reduced PC12h cells (PC12h/Deltasyx) that were stably transfected with a plasmid for antisense syntaxin 1A expression were constructed. Depolarizing stimulation of PC12h/Deltasyx enhanced dopamine release, compared with PC12h. There was a strong inverse correlation between syntaxin 1A protein expression and enhancement of dopamine release. Reduction of syntaxin 1A had no effect on increase of the cytoplasmic free Ca2+ concentration by depolarized stimulation. Moreover, PC12h/Deltasyx clones similarly enhanced of exocytosis by native secretagogues. These results indicate that syntaxin 1A has more than one function in exocytosis. 相似文献
13.
Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of alpha-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and alpha-SNAP from SNARE complex. 相似文献
14.
Johnson JL Monfregola J Napolitano G Kiosses WB Catz SD 《Molecular biology of the cell》2012,23(10):1902-1916
Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin. 相似文献
15.
A cell-free system for regulated exocytosis in PC12 cells 总被引:9,自引:0,他引:9
Avery J Ellis DJ Lang T Holroyd P Riedel D Henderson RM Edwardson JM Jahn R 《The Journal of cell biology》2000,148(2):317-324
We have developed a cell-free system for regulated exocytosis in the PC12 neuroendocrine cell line. Secretory vesicles were preloaded with acridine orange in intact cells, and the cells were sonicated to produce flat, carrier-supported plasma membrane patches with attached vesicles. Exocytosis resulted in the release of acridine orange which was visible as a disappearance of labeled vesicles and, under optimal conditions, produced light flashes by fluorescence dequenching. Exocytosis in vitro requires cytosol and Ca(2+) at concentrations in the micromolar range, and is sensitive to Tetanus toxin. Imaging of membrane patches at diffraction- limited resolution revealed that 42% of docked granules were released in a Ca(2+)-dependent manner during 1 min of stimulation. Electron microscopy of membrane patches confirmed the presence of dense-core vesicles. Imaging of membrane patches by atomic force microscopy revealed the presence of numerous particles attached to the membrane patches which decreased in number upon stimulation. Thus, exocytotic membrane fusion of single vesicles can be monitored with high temporal and spatial resolution, while providing access to the site of exocytosis for biochemical and molecular tools. 相似文献
16.
Chen YA Scales SJ Duvvuri V Murthy M Patel SM Schulman H Scheller RH 《The Journal of biological chemistry》2001,276(28):26680-26687
The calcium (Ca(2+)) regulation of neurotransmitter release is poorly understood. Here we investigated several aspects of this process in PC12 cells. We first showed that osmotic shock by 1 m sucrose stimulated rapid release of neurotransmitters from intact PC12 cells, indicating that most of the vesicles were docked at the plasma membrane. Second, we further investigated the mechanism of rescue of botulinum neurotoxin E inhibition of release by recombinant SNAP-25 COOH-terminal coil, which is known to be required in the triggering stage. We confirmed here that Ca(2+) was required simultaneously with the SNAP-25 peptide, with no significant increase in release if either the peptide or Ca(2+) was present during the priming stage as well as the triggering, suggesting that SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complex assembly was involved in the final Ca(2+)-triggered event. Using this rescue system, we also identified a series of acidic surface SNAP-25 residues that rescued better than wild-type when mutated, due to broadened Ca(2+) sensitivity, suggesting that this charged patch may interact electrostatically with a negative regulator of membrane fusion. Finally, we showed that the previously demonstrated stimulation of exocytosis in this system by calmodulin required calcium binding, since calmodulin mutants defective in Ca(2+)-binding were not able to enhance release. 相似文献
17.
Fukuda M Kanno E Satoh M Saegusa C Yamamoto A 《The Journal of biological chemistry》2004,279(50):52677-52684
It has recently been proposed that synaptotagmin (Syt) VII functions as a plasma membrane Ca2+ sensor for dense-core vesicle exocytosis in PC12 cells based on the results of transient overexpression studies using green fluorescent protein (GFP)-tagged Syt VII; however, the precise subcellular localization of Syt VII is still a matter of controversy (plasma membrane versus secretory granules). In this study we established a PC12 cell line "stably expressing" the Syt VII-GFP molecule and demonstrated by immunocytochemical and immunoelectron microscopic analyses that the Syt VII-GFP protein is localized on dense-core vesicles as well as in other intracellular membranous structures, such as the trans-Golgi network and lysosomes. Syt VII-GFP forms a complex with endogenous Syts I and IX, but not with Syt IV, and it colocalize well with Syts I and IX in the cellular processes (where dense-core vesicles are accumulated) in the PC12 cell line. We further demonstrated by an N-terminal antibody-uptake experiment that Syt VII-GFP-containing dense-core vesicles undergo Ca2+ -dependent exocytosis, the same as endogenous Syt IX-containing vesicles. Moreover, silencing of Syt VII-GFP with specific small interfering RNA dramatically reduced high KCl-dependent neuropeptide Y secretion from the stable PC12 cell line (approximately 60% of the control cells), whereas the same small interfering RNA had little effect on neuropeptide Y secretion from the wild-type PC12 cells (approximately 85-90% of the control cells), indicating that the level of endogenous expression of Syt VII molecules must be low. Our results indicate that the targeting of Syt VII-GFP molecules to specific membrane compartment(s) is affected by the transfection method (transient expression versus stable expression) and suggested that Syt VII molecule on dense-core vesicles functions as a vesicular Ca2+ sensor for exocytosis in endocrine cells. 相似文献
18.
Fukuda M Kanno E Ogata Y Saegusa C Kim T Loh YP Yamamoto A 《The Journal of biological chemistry》2003,278(5):3220-3226
Synaptotagmin IV (Syt IV) is a fourth member of the Syt family and has been shown to regulate some forms of memory and learning by analysis of Syt IV null mutant mice (Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., and Herschman, H. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5598-5603). However, the involvement of Syt IV protein in vesicular trafficking and even its localization in secretory vesicles are still matters of controversy. Here we present several lines of evidence showing that the Syt IV protein in PC12 cells is normally localized in the Golgi or immature vesicles at the cell periphery and is sorted to fusion-competent mature dense-core vesicles in response to short nerve growth factor (NGF) stimulation. (i) In undifferentiated PC12 cells, Syt IV protein is mainly localized in the Golgi and small amounts are also present at the cell periphery, but according to the results of an immunocytochemical analysis, they do not colocalize with conventional secretory vesicle markers (Syt I, Syt IX, Rab3A, Rab27A, vesicle-associated membrane protein 2, and synaptophysin) at all. By contrast, limited colocalization of Syt IV protein with dense-core vesicle markers is found in the distal parts of the neurites of NGF-differentiated PC12 cells. (ii) Immunoelectron microscopy with highly specific anti-Syt IV antibody revealed that the Syt IV protein in undifferentiated PC12 cells is mainly present on the Golgi membranes and immature secretory vesicles, whereas after NGF stimulation Syt IV protein is also present on the mature dense-core vesicles. (iii) An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in the neurites of NGF-differentiated PC12 cells undergo Ca(2+)-dependent exocytosis, whereas no uptake of the anti-Syt IV-N antibody was observed in undifferentiated PC12 cells. Our results suggest that Syt IV is a stimulus (e.g. NGF)-dependent regulator for exocytosis of dense-core vesicles. 相似文献
19.
Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells. 总被引:1,自引:1,他引:1
下载免费PDF全文

Rab3A is a small GTPase implicated in the docking of secretory vesicles in neuroendocrine cells. A putative downstream target for Rab3A, rabphilin-3A, is located exclusively on secretory vesicle membranes. It contains near its C terminus two C2 domains that bind Ca2+ in a phospholipid-dependent manner and an N-terminal, Rab3A-binding domain that includes a Cys-rich region. We have determined that the Cys-rich domain binds two Zn2+ ions and is necessary but not sufficient for efficient binding of rabphilin to Rab3A. A minimal Rab3A-binding domain consists of residues 45 to 170 of rabphilin. HA1-tagged Rab3A and a green fluorescent protein (GFP)-rabphilin fusion were used to examine the roles of Rab3A and of rabphilin domains in the subcellular localization of these proteins. A Rab3A mutant (T54A) that does not bind rabphifin in vitro colocalized with the GFP-rabphilin fusion, indicating that Rab3A targeting is independent of its interaction with rabphilin. Deletion of the C2 domains of rabphilin reduced membrane association of GFP-rabphilin but did not cause mistargeting of the membrane-associated fraction. However, disruption of the zinc fingers, which drastically reduced Rab3A binding, did not reduce membrane association. These results suggest that the C2 domains are required for efficient membrane attachment of rabphilin in PC12 cells and that Rab3A binding may act to target the protein to the correct membrane. 相似文献
20.
de Barry J Janoshazi A Dupont JL Procksch O Chasserot-Golaz S Jeromin A Vitale N 《The Journal of biological chemistry》2006,281(26):18098-18111
Several studies have shown that the neuronal calcium sensor (NCS-1) and phosphoinositol 4-kinase-beta (PI4K-beta) regulate the exocytotic process of nerve and neuroendocrine cells. The aim of our study was to investigate their possible interaction at rest and during stimulation in living cells and to decipher the role of this interaction in the secretory process. In PC12 cells, we observed a stimulation-induced recruitment of NCS-1 and PI4K-beta from the intracellular compartment toward the plasma membrane. This recruitment was highly correlated to the intracellular Ca(2+) rise induced by secretagogues. Using fluorescence resonance energy transfer between PI4K-beta-ECFP and NCS-1-EYFP, we show that both proteins are interacting in resting cells and that this interaction increases with stimulation. It appears that the membrane insertion of NCS-1 is necessary for the interaction with PI4K-beta, since a mutation that prevented the membrane insertion of NCS-1 abolished NCS-1-PI4K-beta interaction, as revealed by fluorescence resonance energy transfer analysis. Additionally, the overexpression of mutated NCS-1 prevents the stimulatory effect on secretion induced by PI4K-beta, suggesting that the interaction of the two proteins on a membrane compartment is necessary for the secretory function. Moreover, extinction of endogenous PI4K-beta by small interfering RNA inhibits secretion and completely prevents the stimulatory effect of NCS-1 on calcium-evoked exocytosis from permeabilized PC12 cells, showing directly for the first time the functional implication of a NCS-1.PI4K-beta complex in regulated exocytosis. 相似文献