首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.  相似文献   

2.
TRP (Transient Receptor Potential) cation channels of the TRPM subfamily have been found to be critically important for the regulation of Mg2+ homeostasis in both protostomes (e.g., the nematode, C. elegans, and the insect, D. melanogaster) and deuterostomes (e.g., humans). Although significant progress has been made toward understanding how the activities of these channels are regulated, there are still major gaps in our understanding of the potential regulatory roles of extensive, evolutionarily conserved, regions of these proteins. The C. elegans genes, gon-2, gtl-1 and gtl-2, encode paralogous TRP cation channel proteins that are similar in sequence and function to human TRPM6 and TRPM7. We isolated fourteen revertants of the missense mutant, gon-2(q338), and these mutations affect nine different residues within GON-2. Since eight of the nine affected residues are situated within regions that have high similarity to human TRPM1,3,6 and 7, these mutations identify sections of these channels that are potentially critical for channel regulation. We also isolated a single mutant allele of gon-2 during a screen for revertants of the Mg2+-hypersensitive phenotype of gtl-2(-) mutants. This allele of gon-2 converts a serine to phenylalanine within the highly conserved TRP domain, and is antimorphic against both gon-2(+) and gtl-1(+). Interestingly, others have reported that mutation of the corresponding residue in TRPM7 to glutamate results in deregulated channel activity.  相似文献   

3.
1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca(2+) sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530-amino acid protein with approximately 21% sequence identity to human STIM1. Green fluorescent protein (GFP)-tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1GFP expression, suppresses the EF-hand mutation-induced pBoc arrhythmia, and inhibits intestinal store-operated Ca(2+) (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca(2+) signaling, in wild type and IP(3) signaling mutant worms, and has no effect on intestinal Ca(2+) oscillations and waves. Depletion of intestinal Ca(2+) stores by RNAi knockdown of the ER Ca(2+) pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca(2+) signaling processes and for maintenance of store Ca(2+) levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions.  相似文献   

4.
Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca(2+) oscillations with a period of approximately 50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca(2+) wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP(3)) receptor ITR-1 reduce pBoc and Ca(2+) oscillation frequency and intercellular Ca(2+) wave velocity. In contrast, gain-of-function mutations in the IP(3) binding and regulatory domains of ITR-1 have no effect on pBoc or Ca(2+) oscillation frequency but dramatically increase the speed of the intercellular Ca(2+) wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)-encoding genes demonstrated that pBoc and Ca(2+) oscillations require the combined function of PLC-gamma and PLC-beta homologues. Disruption of PLC-gamma and PLC-beta activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca(2+) oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-gamma functions primarily to generate IP(3) that controls ITR-1 activity. In contrast, IP(3) generated by PLC-beta appears to play little or no direct role in ITR-1 regulation. PLC-beta may function instead to control PIP(2) levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca(2+) signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca(2+) oscillations and intercellular Ca(2+) waves in nonexcitable cells.  相似文献   

5.
Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1.  相似文献   

6.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

7.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

8.
Church DL  Lambie EJ 《Genetics》2003,165(2):563-574
The initiation of postembryonic cell divisions by the gonadal precursors of C. elegans requires the activity of gon-2. gon-2 encodes a predicted cation channel (GON-2) of the TRPM subfamily of TRP proteins and is likely to mediate the influx of Ca(2+) and/or Mg(2+). We report here that mutations in gem-4 (gon-2 extragenic modifier) are capable of suppressing loss-of-function alleles of gon-2. gem-4 encodes a member of the copine family of Ca(2+)-dependent phosphatidylserine binding proteins. Overall, our data indicate that GEM-4 antagonizes GON-2. This antagonism could be mediated by a direct inhibition of GON-2 by GEM-4, since both proteins are predicted to be localized to the plasma membrane. Alternatively, GEM-4 could affect GON-2 activity levels by either promoting endocytosis or inhibiting exocytosis of vesicles that carry GON-2. It is also possible that GEM-4 and GON-2 act in parallel to each other. Mutation of gem-4 does not suppress the gonadal defects produced by inactivation of gon-4, suggesting that gon-4 either acts downstream of gem-4 and gon-2 or acts in a parallel regulatory pathway.  相似文献   

9.
Neuronal networks operate over a wide range of activity levels, with both neuronal and nonneuronal cells contributing to the balance of excitation and inhibition. Activity imbalance within neuronal networks underlies many neurological diseases, such as epilepsy. The Caenorhabditis elegans locomotor circuit operates via coordinated activity of cholinergic excitatory and GABAergic inhibitory transmission. We have previously shown that a gain-of-function mutation in a neuronal acetylcholine receptor, acr-2(gf), causes an epileptic-like convulsion behavior. Here we report that the behavioral and physiological effects of acr-2(gf) require the activity of the TRPM channel GTL-2 in nonneuronal tissues. Loss of gtl-2 function does not affect baseline synaptic transmission but can compensate for the excitation-inhibition imbalance caused by acr-2(gf). The compensatory effects of removing gtl-2 are counterbalanced by another TRPM channel, GTL-1, and can be recapitulated by acute treatment with divalent cation chelators, including those specific for Zn(2+). Together, these data reveal an important role for ion homeostasis in the balance of neuronal network activity and a novel function of nonneuronal TRPM channels in the fine-tuning of this network activity.  相似文献   

10.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   

11.
Muallem S  Wilkie TM 《Cell calcium》1999,26(5):173-180
Polarized cells signal in a polarized manner. This is exemplified in the patterns of [Ca2+]i waves and [Ca2+]i oscillations evoked by stimulation of G protein-coupled receptors in these cells. Organization of Ca(2+)-signaling complexes in cellular microdomains, with the aid of scaffolding proteins, is likely to have a major role in shaping G protein-coupled [Ca2+]i signal pathways. In epithelial cells, these domains coincide with sites of [Ca2+]i-wave initiation and local [Ca2+]i oscillations. Cellular microdomains enriched with Ca(2+)-signaling proteins have been found in several cell types. Microdomains organize communication between Ca(2+)-signaling proteins in the plasma membrane and internal Ca2+ stores in the endoplasmic reticulum through the interaction between the IP3 receptors in the endoplasmic reticulum and Ca(2+)-influx channels in the plasma membrane. Ca2+ signaling appears to be controlled within the receptor complex by the regulators of G protein-signaling (RGS) proteins. Three domains in RGS4 and related RGS proteins contribute important regulatory features. The RGS domain accelerates GTP hydrolysis on the G alpha subunit to uncouple receptor stimulation from IP3 production; the C-terminus may mediate interaction with accessory proteins in the complex; and the N-terminus acts in a receptor-selective manner to confer regulatory specificity. Hence, RGS proteins have both catalytic and scaffolding function in Ca2+ signaling. Organization of Ca(2+)-signaling proteins into complexes within microdomains is likely to play a prominent role in the localized control of [Ca2+]i and in [Ca2+]i oscillations.  相似文献   

12.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

13.
We propose a mechanism for agonist-stimulated Ca2+ oscillations that involves two roles for cytosolic Ca2+: (a) inhibition of inositol-1,4,5-trisphosphate (IP3) stimulated Ca2+ release from the endoplasmic reticulum (ER) and (b) stimulation of the production of IP3 through its action on phospholipase C (PLC), via a Gq protein related mechanism. Relying on quantitative experiments by Parker, I., and I. Ivorra (1990. Proc. Natl. Acad. Sci. USA. 87:260-264) on the inhibition of Ca2+ release from the ER using caged-IP3, we develop a kinetic model of inhibition that allows us to simulate closely their experiments. The model assumes that the ER IP3 receptor is a tetramer of independent subunits that can bind both Ca2+ and IP3. Upon incorporation of the action of Ca2+ on PLC that leads to production of IP3, we observe in-phase-oscillations of Ca2+ and IP3 at intermediate values of agonist stimulation. The oscillations occur on a time scale of 10-20 s, which is comparable to the time scale for inhibition in Xenopus oocytes. Analysis of the mechanism shows that Ca(2+)-inhibition of IP3-stimulated Ca2+ release from the ER is an essential step in the mechanism. We also find that the effect of Ca2+ on PLC can lead to an indirect increase of cytosolic Ca2+, superficially resembling "Ca(2+)-induced Ca(2+)-release." The mechanism that we propose appears to be consistent with recent experiments on REF52 cells by Harootunian, A. T., J. P. Y. Kao, S. Paranjape, and R. Y. Tsien. (1991. Science [Wash. DC]. 251:75-78.) and we propose additional experiments to help test its underlying assumptions.  相似文献   

14.
Mg2+ is an essential ion involved in a multitude of physiological and biochemical processes and a major constituent of bone tissue. Mg2+ homeostasis in mammals depends on the equilibrium between intestinal Mg2+ absorption and renal Mg2+ excretion, but little is known about the molecular nature of the proteins involved in the transepithelial transport of Mg2+ in these organs. Recently, it was shown that patients with mutations in TRPM6, a member of the transient receptor potential family of cation channels, suffer from hypomagnesemia with secondary hypocalcemia (HSH) as a result of impaired renal and/or intestinal Mg2+ handling. Here, we show that TRPM6 is specifically localized along the apical membrane of the renal distal convoluted tubule and the brush-border membrane of the small intestine, epithelia particularly associated with active Mg2+ (re)absorption. In kidney, parvalbumin and calbindin-D28K, two divalent-binding proteins, are co-expressed with TRPM6 and might function as intracellular Mg2+ buffers in the distal convoluted tubule. Heterologous expression of wild-type TRPM6 but not TRPM6 mutants identified in HSH patients induces a Mg2+- and Ca2+-permeable cation channel tightly regulated by intracellular Mg2+ levels. The TRPM6-induced channel displays strong outward rectification, has a 5-fold higher affinity for Mg2+ than for Ca2+, and is blocked in a voltage-dependent manner by ruthenium red. Our data indicate that TRPM6 comprises all or part of the apical Mg2+ channel of Mg2+-absorbing epithelia.  相似文献   

15.
Stimulation of G-protein coupled membrane receptors linked to phospholipase C results in production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (IP3). IP3 releases Ca2+ from the endoplasmic reticulum, which triggers increased Ca2+ influx across the plasma membrane, so-called capacitative calcium entry. DAG can also activate plasma membrane calcium-permeable channels but the mechanism is still not fully understood. In the pregnant human myometrial cell line PHM1 and in primary myometrial cells, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, induced variable oscillatory patterns of intracellular free Ca2+. Similar behavior was seen with Sr2+ entry. The Ca2+ oscillations were not blocked by a broad spectrum of protein kinase C inhibitors, including chelerytrine, bisindolylmaleimide I and calphostin C, and were enhanced and prolonged by RHC-80267, an inhibitor of diacylglycerol lipase. The OAG-induced oscillatory response was not dependent on Ca2+ release from the endoplasmic reticulum but required extracellular Ca2+. Our results indicate that diacylglycerol directly activates cation channels in PHM1 and primary myometrial cells and promotes intracellular Ca2+ oscillations by actions independent of intracellular Ca2+ -ATPase activity and protein kinase C involvement.  相似文献   

16.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

17.
Oscillations in cytosolic free calcium concentrations ([Ca2+]i) can be elicited in REF52 fibroblasts by three different modes of stimulation. We have previously demonstrated that [Ca2+]i oscillations result when these cells are simultaneously depolarized and stimulated with a hormone linked to phosphoinositide breakdown. Further evidence is now presented that such oscillations are linked to fluctuations in the concentration of IP3 and the Ca2+ content of an IP3-sensitive Ca2+ store. [Ca2+]i oscillations can also be generated in REF52 cells either by direct stimulation of G-proteins with GTP gamma S or AlF4- or by destabilizing the membrane potential and opening voltage-dependent calcium channels. This report compares the different types of oscillations and their mechanisms.  相似文献   

18.
In sea urchin eggs, Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) potently self-inactivates but paradoxically induces long-term Ca2+ oscillations. We investigated whether NAADP-induced Ca2+ oscillations arise from the recruitment of other Ca2+ release pathways. NAADP, inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) all mobilized Ca2+ from internal stores but only NAADP consistently induced Ca2+ oscillations. NAADP-induced Ca2+ oscillations were partially inhibited by heparin or 8-amino-cADPR alone, but eliminated by the presence of both, indicating a requirement for both IP3- and cADPR-dependent Ca2+ release. Thapsigargin completely blocked IP3 and cADPR responses as well as NAADP-induced Ca2+ oscillations, but only reduced the NAADP-mediated Ca2+ transient. Following NAADP-mediated release from this Ca2+ pool, the amount of Ca2+ in the Ca2+-induced Ca2+ release stores was increased. These results support a mechanism in which Ca2+ oscillations are initiated by Ca2+ release from NAADP-sensitive Ca2+ stores (pool 1) and perpetuated through cycles of Ca2+ uptake into and release from Ca2+-induced Ca2+ release stores (pool 2). These results provide the first direct evidence in support of a two-pool model for Ca2+ oscillations.  相似文献   

19.
Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, due to activation of TRPM8, a Ca2+-permeable, cold-activated member of the TRP superfamily of cation channels. Menthol also induces Ca2+ release from intracellular stores in several TRPM8-expressing cell types, which has led to the suggestion that TRPM8 can function as an intracellular Ca2+-release channel. Here we show that menthol induces Ca2+ release from intracellular stores in four widely used cell lines (HEK293, lymph node carcinoma of the prostate (LNCaP), Chinese hamster ovary (CHO), and COS), and provide several lines of evidence indicating that this release pathway is TRPM8-independent: 1) menthol-induced Ca2+ release was potentiated at higher temperatures, which contrasts to the cold activation of TRPM8; 2) overexpression of TRPM8 did not enhance the menthol-induced Ca2+) release; 3) menthol-induced Ca2+ release was mimicked by geraniol and linalool, which are structurally related to menthol, but not by the more potent TRPM8 agonists icilin or eucalyptol; and 4) TRPM8 expression in HEK293 cells was undetectable at the protein and mRNA levels. Moreover, using a novel TRPM8-specific antibody we demonstrate that both heterologously expressed TRPM8 (in HEK293 cells) and endogenous TRPM8 (in LNCaP cells) are mainly localized in the plasma membrane, which contrast to previous localization studies using commercial anti-TRPM8 antibodies. Finally, aequorin-based measurements demonstrate that the TRPM8-independent menthol-induced Ca2+ release originates from both endoplasmic reticulum and Golgi compartments.  相似文献   

20.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号