首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) and lymphotoxin-beta receptor (LTbetaR) signaling both play important roles in inflammatory and immune responses through activation of NF-kappaB. Using various deficient mouse embryonic fibroblast cells, we have compared the signaling pathways leading to NF-kappaB induction in response to TNF-alpha and LTbetaR activation. We demonstrate that LTbetaR ligation induces not only RelA/p50 dimers but also RelB/p50 dimers, whereas TNF-alpha induces only RelA/p50 dimers. LTbetaR-induced binding of RelB/p50 requires processing of p100 that is mediated by IKKalpha but is independent of IKKbeta, NEMO/IKKgamma, and RelA. Moreover, we show that RelB, p50, and p100 can associate in the same complex and that TNF-alpha but not LTbeta signaling increases the association of p100 with RelB/p50 dimers in the nucleus, leading to the specific inhibition of RelB DNA binding. These results suggest that the alternative NF-kappaB pathway based on p100 processing may account not only for the activation of RelB/p52 dimers but also for that of RelB/p50 dimers and that p100 regulates the binding activity of RelB/p50 dimers via at least two distinct mechanisms depending on the signaling pathway involved.  相似文献   

2.
IkappaB Kinase (IKK)alpha is required for activation of an alternative NF-kappaB signaling pathway based on processing of the NF-kappaB2/p100 precursor protein, which associates with RelB in the cytoplasm. This pathway, which activates RelB:p52 dimers, is required for induction of several chemokine genes needed for organization of secondary lymphoid organs. We investigated the basis for the IKKalpha dependence of the induction of these genes in response to engagement of the lymphotoxin beta receptor (LTbetaR). Using chromatin immunoprecipitation, we found that the promoters of organogenic chemokine genes are recognized by RelB:p52 dimers and not by RelA:p50 dimers, the ubiquitous target for the classical NF-kappaB signaling pathway. We identified in the IKKalpha-dependent promoters a novel type of NF-kappaB-binding site that is preferentially recognized by RelB:p52 dimers. This site links induction of organogenic chemokines and other important regulatory molecules to activation of the alternative pathway.  相似文献   

3.
The noncanonical NF-kappaB pathway regulates the development and function of multiple organs and cell lineages. We have generated mice harboring a novel mutation in Nfkb2 that prevents the processing of the inhibitory precursor, p100, into the active subunit, p52. Mutant mice express a complex phenotype with abnormalities in a variety of tissues, and with a spectrum that is more severe than in mice carrying a targeted deletion of Nfkb2. Signaling through the noncanonical pathway is ablated due to the absence of p52, resulting in disorganized splenic architecture and disrupted B cell development. The inhibitory precursor form of NF-kappaB2 interacts with RelA, preventing activation of RelA dimers in response to both canonical and noncanonical stimuli, which in combination with p52 deficiency, results in defective lymph node formation and bone homeostasis. These findings demonstrate a key role for NF-kappaB2 in the regulation of RelA activation and suggest overlap in the function of NF-kappaB members in canonical and noncanonical pathway signaling.  相似文献   

4.
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract infection in children worldwide. RSV infects airway epithelial cells, where it activates inflammatory genes via the NF-kappaB pathway. NF-kappaB is controlled by two pathways, a canonical pathway that releases sequestered RelA complexes from the IkappaBalpha inhibitor, and a second, the noncanonical pathway, that releases RelB from the 100-kDa NF-kappaB2 complex. Recently we found that the retinoic acid-inducible gene I (RIG-I) is a major intracellular RSV sensor upstream of the canonical pathway. In this study, we surprisingly found that RIG-I silencing also inhibited p100 processing to 52-kDa NF-kappaB2 ("p52"), suggesting that RIG-I was functionally upstream of the noncanonical regulatory kinase complex composed of NIK.IKKalpha subunits. Co-immunoprecipitation experiments not only demonstrated that NIK associated with RIG-I and its downstream adaptor, mitochondrial antiviral signaling (MAVS), but also showed the association between IKKalpha and MAVS. To further understand the role of the NIK.IKKalpha pathway, we compared RSV-induced NF-kappaB activation using wild type, Ikkgamma(-/-), Nik(-/-), and Ikkalpha(-/-)-deficient MEF cells. Interestingly, we found that in canonical pathway-defective Ikkgamma(-/-) cells, RSV induced RelA by liberation from p100 complexes. RSV was still able to activate IP10, Rantes, and Grobeta gene expression in Ikkgamma(-/-) cells, and this induction was inhibited by small interfering RNA-mediated RelA knockdown but not RelB silencing. These data suggest that part of the RelA activation in response to RSV infection was induced by a "cross-talk" pathway involving the noncanonical NIK.IKKalpha complex downstream of RIG-I.MAVS. This pathway may be a potential target for RSV treatment.  相似文献   

5.
Inflammatory NF-kappaB/RelA activation is mediated by the three canonical inhibitors, IkappaBalpha, -beta, and -varepsilon. We report here the characterization of a fourth inhibitor, nfkappab2/p100, that forms two distinct inhibitory complexes with RelA, one of which mediates developmental NF-kappaB activation. Our genetic evidence confirms that p100 is required and sufficient as a fourth IkappaB protein for noncanonical NF-kappaB signaling downstream of NIK and IKK1. We develop a mathematical model of the four-IkappaB-containing NF-kappaB signaling module to account for NF-kappaB/RelA:p50 activation in response to inflammatory and developmental stimuli and find signaling crosstalk between them that determines gene-expression programs. Further combined computational and experimental studies reveal that mutant cells with altered balances between canonical and noncanonical IkappaB proteins may exhibit inappropriate inflammatory gene expression in response to developmental signals. Our results have important implications for physiological and pathological scenarios in which inflammatory and developmental signals converge.  相似文献   

6.
7.
Modulation of NF-kappaB activity by exchange of dimers   总被引:1,自引:0,他引:1  
Saccani S  Pantano S  Natoli G 《Molecular cell》2003,11(6):1563-1574
  相似文献   

8.
9.
Lymphotoxin beta receptor (LTbetaR)-induced activation of NF-kappaB in mouse embryo fibroblasts was mediated by the classical pathway and by an alternative or second pathway. The classical pathway involved the IkappaB kinase (IKK)beta- and IKKgamma-dependent degradation of IkappaBalpha and resulted in the rapid but transient activation of primarily RelA-containing NF-kappaB dimers. The alternative or second pathway proceeded via NF-kappaB-inducing kinase (NIK)-, IKKalpha-, and protein synthesis-dependent processing of the inhibitory NF-kappaB2 p100 precursor protein to the p52 form and resulted in a delayed but sustained activation of primarily RelB-containing NF-kappaB dimers. This second pathway was independent of the classical IKK complex, which is governed by its central IKKgamma regulatory subunit. The sequential engagement of two distinct pathways, coupled with the negative feedback inhibition of RelA complexes by NF-kappaB-induced resynthesis of IkappaBalpha, resulted in a pronounced temporal change in the nature of the NF-kappaB activity during the course of stimulation. Initially dominant RelA complexes were replaced with time by RelB complexes. Therefore, the alternative activation path mediated by processing of p100 was necessary for sustained NF-kappaB activity in mouse embryo fibroblasts in response to LTbetaR stimulation. Based on the phenotype of mice deficient in various components of the LTbetaR-induced activation of p100 processing, we conclude that this pathway is critically involved in the function of stromal cells during the generation of secondary lymphoid organ microarchitectures.  相似文献   

10.
11.
Nuclear factor kappaB (NF-kappaB) is involved in multiple skeletal muscle disorders, but how it functions in differentiation remains elusive given that both anti- and promyogenic activities have been described. In this study, we resolve this by showing that myogenesis is controlled by opposing NF-kappaB signaling pathways. We find that myogenesis is enhanced in MyoD-expressing fibroblasts deficient in classical pathway components RelA/p65, inhibitor of kappaB kinase beta (IKKbeta), or IKKgamma. Similar increases occur in myoblasts lacking RelA/p65 or IKKbeta, and muscles from RelA/p65 or IKKbeta mutant mice also contain higher fiber numbers. Moreover, we show that during differentiation, classical NF-kappaB signaling decreases, whereas the induction of alternative members IKKalpha, RelB, and p52 occurs late in myogenesis. Myotube formation does not require alternative signaling, but it is important for myotube maintenance in response to metabolic stress. Furthermore, overexpression or knockdown of IKKalpha regulates mitochondrial content and function, suggesting that alternative signaling stimulates mitochondrial biogenesis. Together, these data reveal a unique IKK/NF-kappaB signaling switch that functions to both inhibit differentiation and promote myotube homeostasis.  相似文献   

12.
13.
14.
15.
NF-kappaB RelB forms an intertwined homodimer   总被引:1,自引:0,他引:1  
The X-ray structure of the RelB dimerization domain (DD) reveals that the RelBDD assumes an unexpected intertwined fold topology atypical of other NF-kappaB dimers. All typical NF-kappaB dimers are formed by the association of two independently folded immunoglobulin (Ig) domains. In RelBDD, two polypeptides reconstruct both Ig domains in the dimer with an extra beta sheet connecting the two domains. Residues most critical to NF-kappaB dimer formation are invariant in RelB, and Y300 plays a positive role in RelBDD dimer formation. The presence of RelB-specific nonpolar residues at the surface removes several intradomain surface hydrogen bonds that may render the domain fold unstable. Intertwining may stabilize the RelBDD homodimer by forming the extra beta sheet. We show that, as in the crystal, RelB forms an intertwined homodimer in solution. We suggest that the transiently stable RelB homodimer might prevent its rapid degradation, allowing for heterodimer formation with p50 and p52.  相似文献   

16.
17.
Targeted disruption of the Rel/NF-kappaB family members NF-kappaB2, encoding p100/p52, and RelB in mice results in anatomical defects of secondary lymphoid tissues. Here, we report that development of Peyer's patch (PP)-organizing centers is impaired in both NF-kappaB2- and RelB-deficient animals. IL-7-induced expression of lymphotoxin (LT) in intestinal cells, a crucial step in PP development, is not impaired in RelB-deficient embryos. LTbeta receptor (LTbetaR)-deficient mice also lack PPs, and we demonstrate that LTbetaR signaling induces p52-RelB and classical p50-RelA heterodimers, while tumor necrosis factor (TNF) activates only RelA. LTbetaR-induced binding of p52-RelB requires the degradation of the inhibitory p52 precursor, p100, which is mediated by the NF-kappaB-inducing kinase (NIK) and the IkappaB kinase (IKK) complex subunit IKKalpha, but not IKKbeta or IKKgamma. Activation of RelA requires all three IKK subunits, but is independent of NIK. Finally, we show that TNF increases p100 levels, resulting in the specific inhibition of RelB DNA binding via the C-terminus of p100. Our data indicate an important role of p52-RelB heterodimers in lymphoid organ development downstream of LTbetaR, NIK and IKKalpha.  相似文献   

18.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are critical signaling adaptors downstream of many receptors in the TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. Whereas TRAF2, 5, and 6 are activators of the canonical NF-kappaB signaling pathway, TRAF3 is an inhibitor of the noncanonical NF-kappaB pathway. The contribution of the different domains in TRAFs to their respective functions remains unclear. To elucidate the structural and functional specificities of TRAF3, we reconstituted TRAF3-deficient cells with a series of TRAF3 mutants and assessed their abilities to restore TRAF3-mediated inhibition of the noncanonical NF-kappaB pathway as measured by NF-kappaB-inducing kinase (NIK) protein levels and processing of p100 to p52. We found that a structurally intact RING finger domain of TRAF3 is required for inhibition of the noncanonical NF-kappaB pathway. In addition, the three N-terminal domains, but not the C-terminal TRAF domain, of the highly homologous TRAF5 can functionally replace the corresponding domains of TRAF3 in suppression of the noncanonical NF-kappaB pathway. This functional specificity correlates with the specific binding of TRAF3, but not TRAF5, to the previously reported TRAF3 binding motif in NIK. Our studies suggest that both the RING finger domain activity and the specific binding of the TRAF domain to NIK are two critical components of TRAF3 suppression of NIK protein levels and the processing of p100 to p52.  相似文献   

19.
20.
Lymphotoxin-beta receptor (LTbetaR) is a member of the tumor necrosis factor receptor (TNFR) superfamily that activates nuclear factor-kappaB (NF-kappaB) through the IkappaB kinase (IKK) complex, the core of which is comprised of IKK1, IKK2 and NF-kappaB essential modulator (NEMO). We demonstrate here that the LTbetaR signaling to NF-kappaB activation does not necessarily require NEMO, which is essential for TNFR signaling. In the absence of NEMO, the p50 and RelB, but not RelA subunits of NF-kappaB are found in the nuclear DNA binding complexes induced by the LTbetaR signaling. Our results thus disclose NEMO-independent NF-kappaB activation by LTbetaR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号