首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of capsular polysaccharide synthesis in Escherichia coli K12   总被引:27,自引:12,他引:27  
  相似文献   

3.
Escherichia coli K5 polysaccharide has structural analogies with N-acetylheparosan, a non-sulphated precursor of heparin and, for this reason, can be considered an attractive precursor for the production of semi-synthesis heparin analogues. This polysaccharide has two components: a high molecular weight (HMW) one and a low molecular weight (LMW) one, whose ratio varies depending on the action of a lyase enzyme synthesized by the same K5 producer strain. The present paper reports the production of the K5 polysaccharide by a spontaneous E. coli mutant strain lacking the lyase activity. Similar K5 polysaccharide yields, 180 mg l(-1) after 16 h fermentation, were obtained by both the wild and mutant strains, though K5 lyase activity was only observed in the culture filtrates from the wild strain. The time course of the specific filtrate volume (1 m(-2)) and of the specific filtrate flux rate (1 m(-2) h(-1)) during ultrafiltration (UF) of culture filtrates where the lyase enzyme acted on the K5 chain, showed a decrease of UF performance, probably because of membrane fouling by the LMW K5 fraction. In particular, the specific filtrate volume and specific filtrate flux rate of wild strain samples reached respectively 13 l m(-2) and 4 l m(-2) h(-1), compared to 25 l m(-2) and 15 l m(-2) h(-1) obtained from the mutant strain samples. PCR molecular analysis of the DNA region encoding for the lyase enzyme showed that, in the mutant strain, molecular rearrangements occurred in both regulatory and structural regions.  相似文献   

4.
A new substrate for the deacetylase which catalyzes the removal of the N-acetyl groups from N-acetylheparosan in the course of heparin biosynthesis has been prepared. The capsular polysaccharide from Escherichia coli 010:K5:H4, which is structurally identical to N-acetylheparosan, was partially N-deacetylated by hydrazinolysis and was then radioactively labeled by N-acetylation with [3H]acetic anhydride. Upon incubation of the labeled polysaccharide with microsomes from the Furth mastocytoma, [3H]acetyl groups were released, demonstrating that the bacterial polysaccharide was a substrate for the N-deacetylase. Reaction conditions were established which permitted the quantitative assay of N-deacetylase activity; a Km of 74 mg polysaccharide/liter was determined, which corresponds to 2.1 X 10(-4) M, expressed as concentration of uronic acid; Vmax was 3.4 nmol/mg protein/liter. In confirmation of previous results, it was observed (a) that the reaction was stimulated by 3'-phosphoadenylylsulfate (up to a maximum of 45% at a concentration of 0.5 mM), suggesting that N-sulfation occurred which facilitated continued action of the N-deacetylase, and (b) that NaCl and KCl inhibited the enzyme, with 50% reduction of activity at a concentration of 25 mM. In the course of this work, a simple, single-vial assay procedure was used. Released [3H]acetate was extracted from the acidified reaction mixture with a toluene- or xylene-based scintillation fluid containing 10% isoamyl alcohol and measured directly by scintillation spectrometry.  相似文献   

5.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

6.
Methylation, 1H nuclear magnetic resonance, and bacteriophage degradation results indicate that the Escherichia coli serotype K30 capsular polysaccharide consists of leads to 2)-alpha-D-Manp-(1 leads to 3)-beta-D-Galp-(1 leads to chains carrying beta-D-GlcUAp-(1 leads to 3)-alpha-D-Galp-(1 leads to branches at position 3 of the mannoses.  相似文献   

7.
Spontaneous mutants of Rhizobium leguminosarum biovar viciae strain C1204b were selected for their ability to tolerate 0.2 M NaCl, a growth-inhibiting level of salt for the parental strain. Transposon-mediated salt-sensitive mutants of strain C1204b were screened for their inability to grow in 0.08 M NaCl. Quantitation of the free-amino acid pools in the mutants grown in NaCl revealed a dramatic increase in glutamine, serine, glutamate and proline, and to a lesser extent alanine and glycine in the salt-tolerant mutants in comparison with the parental strain exposed to NaCl; but only glutamate and proline increased in the salt-sensitive mutants under NaCl stress. Extracellular polysaccharide levels were quantitated for the salt-tolerant mutants and determined to be approximately two-fold higher than for the parental strain. Although the mutations that occurred in the NaCl-tolerant and NaCl-sensitive strains did not interfere with nodule formation, no nitrogenase activity could be observed in the NaCl tolerant mutants as evaluated by acetylene reduction.  相似文献   

8.
The structure of the capsular polysaccharide from Escherichia coli O8:K44 (A):H- (K44 antigen) has been established using the techniques of methylation, beta-elimination, deamination, and Smith degradation. N.m.r. spectroscopy (13C and 1H) was used extensively to establish the nature of the anomeric linkages of the polysaccharide and of oligosaccharides derived through degradative procedures. The K antigen is comprised of repeating units of the linear tetrasaccharide shown. This acidic polysaccharide represents the first instance of an E. coli K antigen in this series (group A) that has been found to contain two different 2-acetamido-2-deoxyhexoses.  相似文献   

9.
The majority of capsular polysaccharides (K antigens) are linear molecules and their genes have a common functional organisation encoding common steps in capsule biogenesis. However, the K4 antigen is a substituted polymer composed of a chondroitin backbone with a fructose side chain. In order to determine whether K4 biosynthesis uses these common mechanisms the K4 antigen genes were cloned. DNA probes taken from the two conserved regions of the K1 genes were used to isolate one plasmid, pRD1, homologous to both probes. Immunological analysis was used to show that pRD1 directs the production of the substituted K4 antigen on the cell surface. Southern hybridisation was used to show that the cloned genes are organised in the same way as other K antigen gene clusters. We conclude that the branched K4 antigen is handled by the same post-polymerisation mechanisms as other linear K antigens.  相似文献   

10.
The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 gcww/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.  相似文献   

11.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

12.
The nucleotide sequence of region 1 of the K5 antigen gene cluster of Escherichia coli was determined. This region is postulated to encode functions which, at least in part, participate in translocation of polysaccharide across the periplasmic space and onto the cell surface. Analysis of the nucleotide sequence revealed five genes that encode proteins with predicted molecular masses of 75.7, 60.5, 44, 43, and 27 kDa. The 27-kDa protein was 70.7% homologous to the CMP-2-keto-3-deoxyoctulosonic acid synthetase enzyme encoded by the E. coli kdsB gene, indicating the presence of a structural gene for a similar enzyme within the region 1 operon. The 43-kDa protein was homologous to both the Ctrb and BexC proteins encoded by the Neisseria meningitidis and Haemophilus influenzae capsule gene clusters, respectively, indicating common stages in the expression of capsules in these gram-negative bacteria. However, no homology was detected between the 75.7, 60.5-, and 44-kDa proteins and any of the proteins so far described for the H. influenzae and N. meningitidis capsule gene clusters.  相似文献   

13.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

14.
The Escherichia coli capsular polysaccharides (K antigens) K5 and K20 are known as primary receptors for the coliphage phi K5 and phi K20, respectively. A host range study of the phage revealed that E. coli K5 strains were not only lysed by phi K5 but also by phi K20, and furthermore that the E. coli K95 test strain was attacked by phi K5 in addition to K5 strains. In order to find out whether the phage can degrade the K antigens, the interaction of the phage with isolated polysaccharides was studied. It could be demonstrated that phi K5 was able to depolymerize the K5 and K95 polysaccharides and that phi K20 showed degrading activity towards the antigens K20 and K5. Obviously, each of the phages was associated with two different enzyme systems which enabled them to recognize and depolymerize chemically unrelated polysaccharides.  相似文献   

15.
Biosynthesis of the capsular K5 polysaccharide of Escherichia coli, which has the structure 4)-beta GlcA-1,4-alpha GlcNAc-(1, was studied with membrane preparations from an E. coli K5 wild-type strain and from a recombinant K-12 strain expressing the K5 capsule. Polymerization occurs at the inner face of the cytoplasmic membrane without the participation of lipid-linked oligosaccharides. The serological K5 specificity of the in vitro product was determined with a K5-specific monoclonal antibody in an antigen-binding assay. The K5 polysaccharide, as obtained from the membranes after an in vitro incubation, has 2-keto-3-deoxyoctulosonic acid as the reducing sugar, which indicates that the polysaccharide grows by chain elongation at the nonreducing end.  相似文献   

16.
The chemical structure of the K52 antigenic capsular polysaccharide (K52 antigen) of Escherichia coli O4:K52:H- was elucidated by composition, nuclear magnetic resonance spectroscopy, methylation, periodate oxidation before and after graded acid hydrolysis and by oligosaccharide analysis. The polysaccharide consists of a backbone of alpha-galactose units interlinked between C1 and C3 by phosphodiester bridges. This poly(alpha-galactosyl-phosphate) is substituted at C2 of each galactose unit by beta-fructofuranose residues. About 80% of the galactose units are O-acetylated at C4 and about 10% of the fructose units are both O-acetylated and O-propionylated at C1. The K52 polysaccharide has an average molecular mass of 34 kDa, thus consisting of approximately 65 fructosyl-galactosyl-phosphate repeating units.  相似文献   

17.
Summary The recN gene which is necessary for inducible DNA repair and recombination in Escherichia coli has been cloned into the low copy plasmid vector pHSG415. Analysis of the recombinant plasmid, pSP100, revealed a 5.6 Kb HindIII insert of chromosomal DNA. Transposon inactivation of recN function and analysis of a recN::Mu(Ap lac) fusion located the coding region to a 1.4 Kb region within a 2.1 Kb BglII-AvaI DNA fragment transcribed in a clockwise direction with respect to the chromosome map. The gene product was identified in maxicells as a 60,000 dalton protein. Synthesis of this protein was increased in cells lacking LexA activity or in strains carrying recN cloned into the multicopy vector pBR322. Multiple copies of recN increase resistance to ionizing radiation in recN mutants but reduce the survival of a wild-type strain.  相似文献   

18.
An enzyme KfoG with unknown function is coded by the gene kfoG. Gene kfoG belongs to genes from region 2, which are responsible for structure of capsular polysaccharide. Only two enzymes, KfoG and KfoC, coded by genes from region 2, have a glycosyltransferase motif. KfoC is the bifunctional enzyme, which is able to add both GalNAc and GlcUA on nascent polysaccharide, termed chondroitin polymerase. KfoG was predicted to be a fructosyltransferase. The gene that codes the KfoG enzyme was disrupted using homological recombination and absence of this gene was confirmed on both DNA and RNA levels. After disruption no structural changes have been observed, what indicates that fructose branching of the chondroitin backbone is not caused by enzymes, which are coded by genes from region 2 of the K4 capsular gene cluster.  相似文献   

19.
The structure of the K95 antigenic capsular polysaccharide (K95 antigen) of Escherichia coli O75:K95:H5 was elucidated by determination of the composition, 1H- and 13C-n.m.r. spectroscopy, periodate oxidation, and methylation analysis. The K95 polysaccharide, which contains furanosidic 3-deoxy-D-manno-2-octulosonic acid (KDOf) residues, consists of----3)-beta-D-Rib-(1----8)-KDOf-(2----repeating units, has a molecular weight of approximately 25,000 (approximately 65 repeating units), and is randomly O-acetylated (1 acetyl group per repeating unit at unknown positions).  相似文献   

20.
The Escherichia coli K42 capsular polysaccharide consists of leads to 3)-alpha-D-Galp-(1 leads to 3)-alpha-D-GalUAp-(1 leads to 3)-alpha-L-Fucp-(1 leads to repeating units. The E. coli K42 and Klebsiella K63 antigens are serologically identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号