首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mueller M  Nidetzky B 《FEBS letters》2007,581(7):1403-1408
Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.3)-fold, and independently of leaving group ability and nucleophilic reactivity of the substrate, respectively. pH dependences of the catalytic steps were similar for D295N and wild-type. The 10(5)-fold preference of the wild-type for glucosyl transfer compared with mannosyl transfer from phosphate to fructose was lost in D295N and D295E. Selective disruption of catalysis to glucosyl but not mannosyl transfer in the two mutants suggests that the side chain of Asp-295, through a strong hydrogen bond with the equatorial sugar 2-hydroxyl, stabilizes the transition states flanking the beta-glucosyl enzyme intermediate by > or = 23kJ/mol.  相似文献   

2.
The structure of Pseudomonas fluorescens mannitol 2-dehydrogenase with bound NAD+ leads to the suggestion that the carboxylate group of Asp(69) forms a bifurcated hydrogen bond with the 2' and 3' hydroxyl groups of the adenosine of NAD+ and contributes to the 400-fold preference of the enzyme for NAD+ as compared to NADP+. Accordingly, the enzyme with the Asp(69)-->Ala substitution was found to use NADP(H) almost as well as wild-type enzyme uses NAD(H). The Glu(68)-->Lys substitution was expected to enhance the electrostatic interaction of the enzyme with the 2'-phosphate of NADP+. The Glu(68)-->Lys:Asp(69)-->Ala doubly mutated enzyme showed about a 10-fold preference for NADP(H) over NAD(H), accompanied by a small decrease in catalytic efficiency for NAD(H)-dependent reactions as compared to wild-type enzyme.  相似文献   

3.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

4.
Abstract

Sucrose phosphorylase is a bacterial α-transglucosidase that catalyses glucosyl transfer from sucrose to phosphate, releasing d-fructose and α-d-glucose 1-phosphate as the product of the first (enzyme glucosylation) and second (enzyme deglucosylation) step of the enzymatic reaction, respectively. The transferred glucosyl moiety of sucrose is accommodated at the catalytic subsite of the phosphorylase through a network of charged hydrogen bonds whereby a highly conserved residue pair of Asp and Arg points towards the equatorial hydroxyl at C4. To examine the role of this ‘hyperpolar’ binding site for the substrate 4-OH, we have mutated Asp49 and Arg395 of Leuconostoc mesenteroides sucrose phosphorylase individually to Ala (D49A) and Leu (R395L), respectively, and also prepared an ‘uncharged’ double mutant harbouring both site-directed substitutions. The efficiency for enzyme glucosylation from sucrose was massively decreased in purified preparations of D49A (107-fold) and R395L (105-fold) as compared to wild-type enzyme. The double mutant was not active above the detection limit. Enzyme deglucosylation to phosphate proceeded relatively efficient in D49A as well as R395L, about 500-fold less than in the wild-type phosphorylase. Substrate inhibition by phosphate and a loss in selectivity for reaction with phosphate as compared to water were new features in the two mutants. Asp49 and Arg395 are both essential in the catalytic reaction of L. mesenteroides sucrose phosphorylase.  相似文献   

5.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

6.
The current study was conducted to explore the potential of a phosphate solubilizing soil bacterium, Bacillus megaterium mj1212 for enhancing the growth of mustard plants. The newly isolated bacterial strain mj1212 was identified as B. megaterium using phylogenetic analysis and, its phosphate solubilization ability was shown by the clear zone formation on National Botanical Research Institute’s Phosphate medium. Moreover, the phosphate solubilization ability of B. megaterium mj1212 was enhanced by optimal culture conditions at pH 7.0 and 35 °C which might be due to the presence of malic and quinic acid in the culture medium. The beneficial effect of B. megaterium mj1212 in mustard plants was determined by an increasing shoot length, root length and fresh weight of plants. In the biochemical analysis revealed that chlorophyll, sucrose, glucose, fructose and amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ilu, Leu, Tyr, Phe, Lys, His, Arg and Pro) were higher in B. megaterium mj1212 treated plants, when compared to their control. The result of present study suggests that B. megaterium mj1212 treatment could be act as phosphate biofertilizer to improve the plant growth.  相似文献   

7.
The catalytic mechanism of Escherichia coli purine nucleoside phosphorylase (PNP) is revised using site-directed mutagenesis, kinetic studies and structure determinations.The experimental evidence on the role of the particular catalytic amino acid during catalysis has not been available. Therefore, the active site mutants Arg24Ala, Asp204Ala, Asp204Asn, Arg217Ala and Asp204Ala/Arg217Ala were prepared and their kinetics and thermodynamic studies were carried out. The activity tests with natural substrates and 7-methylguanosine confirmed the earlier hypothesis, that catalysis involves protonation of the purine base at position N7 by Asp204, which is triggered by Arg217.The crystal structures of the wild type in complexes with phosphate and sulphate, respectively, and of the Arg24Ala mutant in complex with phosphate/sulphate were determined. The structural data show that previously observed conformational change is a result of the phosphate binding and its interaction with Arg24.As E. coli PNP is a promising candidate for the tumour-directed gene therapy, our results may also help to design efficient mutants useful in gene therapy.  相似文献   

8.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

11.
Sierks MR  Svensson B 《Biochemistry》2000,39(29):8585-8592
Molecular recognition using a series of deoxygenated maltose analogues was used to determine the substrate transition-state binding energy profiles of 10 single-residue mutants at the active site of glucoamylase from Aspergillus niger. The individual contribution of each substrate hydroxyl group to transition-state stabilization with the wild type and each mutant GA was determined from the relation Delta(DeltaG()) = -RT ln[(k(cat)/K(M))(x)/(k(cat)/K(M))(y)], where x represents either a mutant enzyme or substrate analogue and y the wild-type enzyme or parent substrate. The resulting binding energy profiles indicate that disrupting an active site hydrogen bond between enzyme and substrate, as identified in crystal structures, not only sharply reduces or eliminates the energy contributed from that particular hydrogen bond but also perturbs binding contributions from other substrate hydroxyl groups. Replacing the active site acidic groups, Asp55, Glu180, or Asp309, with the corresponding amides, and the neutral Trp178 with the basic Arg, all substantially reduced the binding energy contribution of the 4'- and 6'-OH groups of maltose at subsite -1, even though both Glu180 and Asp309 are localized at subsite 1. In contrast, the substitution, Asp176 --> Asn, located near subsites -1 and 1, did not substantially perturb any of the individual hydroxyl group binding energies. Similarly, the substitutions Tyr116 --> Ala, Ser119 --> Tyr, or Trp120 --> Phe also did not substantially alter the energy profiles even though Trp120 has a critical role in directing conformational changes necessary for activity. Since the mutations at Trp120 and Asp176 reduced k(cat) values by 50- and 12-fold, respectively, a large effect on k(cat) is not necessarily accompanied by changes in hydroxyl group binding energy contributions. Two substitutions, Asn182 --> Ala and Tyr306 --> Phe, had significant though small effects on interactions with 3- and 4'-OH, respectively. Binding interactions between the enzyme and the glucosyl group in subsite -1, particularly with the 4'- and 6'-OH groups, play an important role in substrate binding, while subsite 1 interactions may play a more important role in product release.  相似文献   

12.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

13.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

14.
Using 0.4 m imidazole citrate buffer (pH 7.5) containing 0.1 mm l-cysteine, homodimeric starch phosphorylase from Corynebacterium calluane (CcStP) was dissociated into native-like folded subunits concomitant with release of pyridoxal 5'-phosphate and loss of activity. The inactivation rate of CcStP under resolution conditions at 30 degrees C was, respectively, four- and threefold reduced in two mutants, Arg234-->Ala and Arg242-->Ala, previously shown to cause thermostabilization of CcStP [Griessler, R., Schwarz, A., Mucha, J. & Nidetzky, B. (2003) Eur. J. Biochem.270, 2126-2136]. The proportion of original enzyme activity restored upon the reconstitution of wild-type and mutant apo-phosphorylases with pyridoxal 5'-phosphate was increased up to 4.5-fold by added phosphate. The effect on recovery of activity displayed a saturatable dependence on the phosphate concentration and results from interactions with the oxyanion that are specific to the quarternary state. Arg234-->Ala and Arg242-->Ala mutants showed, respectively, eight- and > 20-fold decreased apparent affinities for phosphate (K(app)), compared to the wild-type (K(app) approximately 6 mm). When reconstituted next to each other in solution, apo-protomers of CcStP and Escherichia coli maltodextrin phosphorylase did not detectably associate to hybrid dimers, indicating that structural complementarity among the different subunits was lacking. Pyridoxal-reconstituted CcStP was inactive but approximately 60% and 5% of wild-type activity could be rescued at pH 7.5 by phosphate (3 mm) and phosphite (5 mm), respectively. pH effects on catalytic rates were different for the native enzyme and pyridoxal-phosphorylase bound to phosphate and could reflect the differences in pK(a) values for the cofactor 5'-phosphate and the exogenous oxyanion.  相似文献   

15.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

16.
The roles of Asp(75), Asp(78), and Glu(83) of the (75)DPSDVARVE(83) element of Mycobacterium smegmatis GTP-dependent phosphoenolpyruvate (PEP) carboxykinase (GTP-PEPCK) were investigated. Asp(78) and Glu(83) are fully conserved in GTP-PEP-CKs. The human PEPCK crystal structure suggests that Asp(78) influences Tyr(220); Tyr(220) helps to position bound PEP, and Glu(83) interacts with Arg(81). Experimental data on other PEPCKs indicate that Arg(81) binds PEP, and the phosphate of PEP interacts with Mn(2+) of metal site 1 for catalysis. We found that D78A and E83A replacements severely reduced activity. E83A substitution raised the apparent K(m) value for Mn(2+) 170-fold. In contrast, Asp(75) is highly but not fully conserved; natural substitutions are Ala, Asn, Gln, or Ser. Such substitutions, when engineered, in M. smegmatis enzyme caused the following. 1) For oxaloacetate synthesis, V(max) decreased 1.4-4-fold. K(m) values for PEP and Mn(2+) increased 3-9- and 1.2-10-fold, respectively. K(m) values for GDP and bicarbonate changed little. 2) For PEP formation, V(max) increased 1.5-2.7-fold. K(m) values for oxaloacetate increased 2-2.8-fold. The substitutions did not change the secondary structure of protein significantly. The kinetic effects are rationalized as follows. In E83A the loss of Glu(83)-Arg(81) interaction affected Arg(81)-PEP association. D78A change altered the Tyr(220)-PEP interaction. These events perturbed PEP-Mn(2+) interaction and consequently affected catalysis severely. In contrast, substitutions at Asp(75), a site far from bound PEP, brought subtle effects, lowering oxaloacetate formation rate but enhancing PEP formation rate. It is likely that Asp(75) substitutions affected PEP-Mn(2+) interaction by changing the positions of Asp(78), Arg(81), and Glu(83), which translated to differential effects on two directions.  相似文献   

17.
Pyrazinamide (PZA) - an important drug in the anti-tuberculosis therapy, activated by an enzyme Pyrazinamidase (PZase). The basis of PZA resistance in Mycobacterium tuberculosis was owing to mutation in pncA gene coding for PZase. Homology modeling of PZase was performed using software Discovery Studio (DS) 2.0 based on the crystal structure of the PZase from Pyrococcus horikoshii (PDB code 1im5), in this study. The model comprises of one sheet with six parallel strands and seven helices with the amino acids Asp8, Asp49, Trp68, Lys96, Ala134, Thr135 and Cys138 at the active site. Five mutants were generated with Gly at position 8, Thr at position 96, Arg at position 104, Tyr and Ser at position 138. The Wild-type (WT) and five mutant models were docked with PZA. The results indicate that the mutants Lys96Thr, Ser104Arg Asp8Gly and Cys138Tyr may contribute to higher level drug resistance than Cys138Ser. These models provide the first in-silico evidence for the binding interaction of PZA with PZase and form the basis for rationalization of PZA resistance in naturally occurring pncA mutant strains of M. tuberculosis.  相似文献   

18.
Because mutations of the ionizable Asp at position 55 of the phosphatidylcholine preferring phospholipase C from Bacillus cereus (PLC(Bc)) to a non-ionizable Asn generate a mutant enzyme (D55N) with 10(4)-fold lower catalytic activity than the wild-type enzyme, we tentatively identified Asp55 as the general base for the enzymatic reaction. To eliminate the alternate possibility that Asp55 is a structurally important amino acid, the X-ray structures of unbound D55N and complexes of D55N with two non-hydrolyzable substrate analogues have been solved and refined to 2.0, 2.0, and 2.3A, respectively. The structures of unbound wild-type PLC(Bc) and a wild-type PLC(Bc)-complex with a non-hydrolyzable substrate analogue do not change significantly as a result of replacing Asp55 with Asn. These observations demonstrate that Asp55 is not critical for the structural integrity of the enzyme and support the hypothesis that Asp55 is the general base in the PLC(Bc)-catalyzed hydrolysis of phospholipids.  相似文献   

19.
Schwarz A  Nidetzky B 《FEBS letters》2006,580(16):3905-3910
Mutagenesis of Asp-196 into Ala yielded an inactive variant of Leuconostoc mesenteroides sucrose phosphorylase (D196A). External azide partly complemented the catalytic defect in D196A with a second-order rate constant of 0.031 M-1 s-1 (pH 5, 30 degrees C) while formate, acetate and halides could not restore activity. The mutant utilized azide to convert alpha-D-glucose 1-phosphate into beta-D-glucose 1-azide, reflecting a change in stereochemical course of glucosyl transfer from alpha-retaining in wild-type to inverting in D196A. Phosphorolysis of beta-D-glucose 1-azide by D196A occurred through a ternary complex kinetic mechanism, in marked contrast to the wild-type whose reactions feature a common glucosyl enzyme intermediate and Ping-Pong kinetics. Therefore, Asp-196 is identified unambiguously as the catalytic nucleophile of sucrose phosphorylase, and its substitution by Ala forces the reaction to proceed via single nucleophilic displacement. D196A is not detectably active as alpha-glucosynthase.  相似文献   

20.
Newell JL  Fay PJ 《Biochemistry》2008,47(33):8786-8795
Factor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential. The contributions of these residues to thrombin-catalyzed activation of factor VIII were assessed following mutagenesis of acidic residues to Ala or Tyr residues to Phe and expression and purification of the B-domainless proteins from stable-expressing cell lines. All mutations showed reduced specific activity from approximately 30% to approximately 70% of the wild-type value. While replacement of the Tyr residues showed little, if any, effect on rates of thrombin-catalyzed proteolysis of factor VIII and consequent activation, the acidic to Ala mutations Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala showed decreased rates of proteolysis at each of the three P1 residues. Mutations at residues Glu724 and Asp725 were most affected with double mutations at these sites showing approximately 10-fold and approximately 30-fold reduced rates of cleavage at Arg372 and Arg1689, respectively. Factor VIII activation profiles paralleled the results assessing rates of proteolysis. Kinetic analyses revealed these mutations minimally affected apparent V max for thrombin-catalyzed cleavage but variably increased the K m for procofactor up to 7-fold, suggesting the latter parameter was dominant in reducing catalytic efficiency. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 likely constitute an exosite-interactive region in factor VIII facilitating cleavages for procofactor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号