共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible nitric-oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. To determine the degradation pathway of iNOS, human epithelial kidney HEK293 cells with stable expression of human iNOS were incubated in the presence of various degradation pathway inhibitors. Treatment with the proteasomal inhibitors lactacystin, MG132, and N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal resulted in the accumulation of iNOS, indicating that these inhibitors blocked its degradation. Moreover, proteasomal inhibition blocked iNOS degradation in a dose- and time-dependent manner as well as when NO synthesis was inhibited by N(omega)-nitro-l-arginine methyl ester. Furthermore, proteasomal inhibition blocked the degradation of an iNOS splice variant that lacked the capacity to dimerize and of an iNOS mutant that lacks l-arginine binding ability, suggesting that iNOS is targeted by proteasomes, notwithstanding its capacity to produce NO, dimerize, or bind the substrate. In contrast to proteasomal inhibitors, the calpain inhibitor calpastatin and the lysosomal inhibitors trans-epoxysuccinyl-l-leucylamido-4-guanidino butane, leupeptin, pepstatin-A, chloroquine, and NH(4)Cl did not lead to significant accumulation of iNOS. Interestingly, when cytokines were used to induce iNOS in RT4 human epithelial cells, the effect of proteasomal inhibition was dichotomous. Lactacystin added prior to cytokine stimulation prevented iNOS induction by blocking the degradation of the NF-kappaB inhibitor IkappaB-alpha, thus preventing activation of NF-kappaB. In contrast, lactacystin added 48 h after iNOS induction led to the accumulation of iNOS. Similarly, in murine macrophage cell line RAW 264.7, lactacystin blocked iNOS degradation when added 48 h after iNOS induction by lipopolysaccharide. These data identify the proteasome as the primary degradation pathway for iNOS. 相似文献
2.
Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome 总被引:18,自引:0,他引:18
Shringarpure R Grune T Mehlhase J Davies KJ 《The Journal of biological chemistry》2003,278(1):311-318
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both. 相似文献
3.
Nomura M Nomura N Yamashita J 《Biochemical and biophysical research communications》2005,335(3):900-905
Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells. 相似文献
4.
A uniform isopeptide-linked multiubiquitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis 总被引:15,自引:0,他引:15
The proteolytic targeting function of ubiquitin was investigated by a combination of site-specific mutagenesis and covalent modification. Lys48 was replaced by a cysteine via mutagenesis of a synthetic ubiquitin gene to generate the mutant Ub-C48. The single cysteine residue in Ub-C48 can be converted into a lysine analog by modification with the sulfhydryl-specific reagent, aminoethyl-8 (N-(iodoethyl)trifluoroacetamide). The resulting protein, Ub-(S-aminoethyl)C48, is equivalent to a wild type ubiquitin except for the substitution of a sulfur atom at the gamma carbon of Lys48. We have tested the ability of these two modified ubiquitins to target the degradation of an engineered beta-galactosidase substrate protein in ubiquitin-depleted reticulocyte lysates. Ub-C48 was unable to stimulate the degradation of this protein substrate although a monoubiquitinated beta-galactosidase was formed. In contrast, Ub-(S-aminoethyl)C48 appears to be as effective as wild type ubiquitin in targeting this substrate protein's degradation as well as the formation of multiply ubiquitinated beta-galactosidase intermediates. In conjunction with the cysteine substitution and modification, we have also examined the effects of blocking the amino groups in ubiquitin with reductive methylation. The methylation of either Lys48 in ubiquitin or its S-aminoethylcysteine counterpart abolished its proteolytic function while the blockage of the remaining six lysines in Ub-(S-aminoethyl)C48 did not alter its competence. Thus, of the seven lysine residues in ubiquitin, only Lys48 is essential. These results established unambiguously that a uniform multiubiquitin chain with ubiquitin-ubiquitin linkage solely at Lys48 is sufficient to target the degradation of a substrate protein in ubiquitin-mediated proteolysis. 相似文献
5.
6.
The short-lived enzyme S-adenosylmethionine decarboxylase uses a covalently bound pyruvoyl cofactor to catalyze the formation of decarboxylated S-adenosylmethionine, which then donates an aminopropyl group for polyamine biosynthesis. Here we demonstrate that S-adenosylmethionine decarboxylase is ubiquitinated and degraded by the 26 S proteasome in vivo, a process that is accelerated by inactivation of S-adenosylmethionine decarboxylase by substrate-mediated transamination of its pyruvoyl cofactor. Proteasome inhibition in COS-7 cells prevents the degradation of S-adenosylmethionine decarboxylase antigen; however, even brief inhibition of the 26 S proteasome caused substantial losses of S-adenosylmethionine decarboxylase activity despite accumulation of S-adenosylmethionine decarboxylase antigen. Levels of the enzyme's substrate (S-adenosylmethionine) increased rapidly after 26 S proteasome inhibition, and this increase in substrate level is consistent with the observed loss of activity arising from an increased rate of inactivation by substrate-mediated transamination. Evidence is also presented that this substrate-mediated transamination accelerates normal degradation of S-adenosylmethionine decarboxylase, as the rate of degradation of the enzyme was increased in the presence of AbeAdo (5'-([(Z)-4-amino-2-butenyl]methylamino]-5'-deoxyadenosine) (a substrate analogue that transaminates the enzyme); conversely, when the intracellular substrate level was reduced by methionine deprivation, the rate of degradation of the enzyme was decreased. Ubiquitination of S-adenosylmethionine decarboxylase is demonstrated by isolation of His-tagged AdoMetDC (S-adenosylmethionine decarboxylase) from COS-7 cells co-transfected with hemagglutinin-tagged ubiquitin and showing bands that were immunoreactive to both anti-AdoMetDC antibody and anti-hemagglutinin antibody. This is the first study to demonstrate that AdoMetDC is ubiquitinated and degraded by the 26 S proteasome, and substrate-mediated acceleration of degradation is a unique finding. 相似文献
7.
8.
9.
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here. 相似文献
10.
Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells 总被引:2,自引:1,他引:2
下载免费PDF全文

Kasbek C Yang CH Yusof AM Chapman HM Winey M Fisk HA 《Molecular biology of the cell》2007,18(11):4457-4469
Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells. 相似文献
11.
Recent studies have shown that ubiquitin-dependent proteolysis by proteasomes plays an essential role in the degradation of ER-retained proteins. We investigated the degradation of individual fibrinogen chains in transfected COS cells which express but do not secrete single chains. In transfected COS cells, the degradation of fibrinogen Bbeta and gamma chain was markedly inhibited by the proteasome inhibitors lactacystin and MG132. These specific proteasome inhibitors also partially affected the degradation of Aalpha chain. In HepG2 cells, which synthesize and secrete fibrinogen, the degradation of intracellular free gamma chain was also inhibited by MG132. We also detected high molecular weight polyubiquitinated forms of fibrinogen chains in transfected COS cells and in HepG2 cells by sequential immunoprecipitation. These results implicate proteasomes in the degradation of fibrinogen chains. In COS cells, gamma chains have a longer half-life than Bbeta chains and Aalpha chains, suggesting that the presence of surplus gamma chains in fibrinogen-producing cells is due to the unequal degradation rate of fibrinogen chains. These results indicate that the ubiquitin-proteasome pathway may be a major system for the degradation of unassembled fibrinogen chains. 相似文献
12.
Fei-Fei Huang Ping-An Chang Lan-Xi Sun Wen-Zhen Qin Li-Ping Han Rui Chen 《Molecular biology reports》2016,43(11):1285-1292
Neuropathy target esterase (NTE) and NTE-related esterase (NRE) are endoplasmic reticulum (ER) membrane-anchored proteins belonging to the NTE protein family. NTE and NRE are degraded by macroautophagy and by the ubiquitin–proteasome pathway. However, the regulation of NTE and NRE by proteasome has not been well understood. Western blotting showed that the deletion of the regulatory region of NTE and NRE led to protein accumulation compared with that of the corresponding wild-type proteins. Further, deletion and site-directed mutagenesis experiments demonstrated that the destruction (D) box was required for the proteasomal degradation of NTE and NRE. However, unlike the deletion of the regulatory region, the deletion of the D box did not affect the subcellular localisation of NTE or NRE or disrupt the ER. Moreover, the deletion of the D box or the regulatory region of NTE has similar inhibitory effects on cell growth, which are greater than those produced by the full-length NTE. Here, for the first time, we show that the D box is involved in the regulation of NTE family proteins by the proteasome but not in their subcellular localisation. In addition, these results suggest that the NTE overexpression-mediated inhibition of cell growth is related to active protein levels but not to its ER disruption effect. 相似文献
13.
In Saccharomyces cerevisiae, protein O-mannosylation, which is executed by protein O-mannosyltransferases, is essential for a variety of biological processes as well as for conferring solubility to misfolded proteins. To determine if O-mannosylation plays an essential role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, we used a model misfolded protein, Gas1*p. The O-mannose content of Gas1*p, which is transferred by protein O-mannosyltransferases, was higher than that of Gas1p. Both Pmt1p and Pmt2p, which do not transfer O-mannose to correctly folded Gas1p, participated in the O-mannosylation of Gas1*p. Furthermore, in a pmt1 Delta pmt2 Delta double-mutant background, degradation of Gas1*p is altered from a primarily proteasome dependent to a vacuolar protease-dependent pathway. This process is in a manner dependent on a Golgi-to-endosome sorting function of the VPS30 complex II. Collectively, our data suggest that O-mannosylation plays an important role for proteasome-dependent degradation of Gas1*p via the ERAD pathway and when O-mannosylation is insufficient, Gas1*p is degraded in the vacuole. Thus, we propose that O-mannosylation by Pmt1p and Pmt2p might be a key step in the targeting of some misfolded proteins for degradation via the proteasome-dependent ERAD pathway. 相似文献
14.
Synaptic plasticity -- the modulation of synaptic strength between a presynaptic terminal and a postsynaptic dendrite -- is thought to be a mechanism that underlies learning and memory. It has become increasingly clear that regulated protein synthesis is an important mechanism used to regulate the protein content of synapses that results in changes in synaptic strength. Recent experiments have highlighted a role for the opposing process, that is, regulated protein degradation via the ubiquitin-proteasome system, in synaptic plasticity. These recent findings raise exciting questions as to how proteasomal activity can regulate synapses over different temporal and spatial scales. 相似文献
15.
The 26 S proteasomal complex, which is responsible for the bulk of protein degradation within the cell, recognizes its target substrates via covalently linked polyubiquitin moieties. However, a small but growing number of proteasomal substrates are degraded without a requirement for ubiquitinylation. One such substrate is the pyrimidine biosynthetic enzyme thymidylate synthase (EC 2.1.1.45), which catalyzes the synthesis of TMP and is the sole de novo source of TTP for DNA replication and repair. Previous work showed that intracellular proteolysis of human thymidylate synthase is directed by a degron at the polypeptide's N-terminal end, composed of an intrinsically disordered region (IDR) followed by a highly conserved amphipathic α-helix (hA). In the present report, we show that the hA helix does not function simply as an extension or scaffold for the IDR; rather, it provides a specific structural component that is necessary for degradation. Furthermore, its helical conformation is required for this function. We demonstrate that small domains from heterologous proteins can substitute for the IDR and the hA helix of human thymidylate synthase, indicating that the degradation-promoting function of these regions is not sequence-specific. The results, in general, indicate that cooperation between intrinsically disordered domains and α-helical segments is required for ubiquitin-independent degradation by the proteasome. There appears to be little sequence constraint on the ability of these regions to function as degron constituents. Rather, it is the overall conformation (or lack thereof) that is critical. 相似文献
16.
Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before the A chain passes into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain. 相似文献
17.
18.
19.
20.
Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome 总被引:1,自引:0,他引:1
Katoh Y Iida K Kang MI Kobayashi A Mizukami M Tong KI McMahon M Hayes JD Itoh K Yamamoto M 《Archives of biochemistry and biophysics》2005,433(2):342-350
Under homeostatic conditions, Nrf2 activity is constitutively repressed. This process is dependent on Keap1, to which Nrf2 binds through the Neh2 domain. Since the N-terminal subdomain of Neh2 (Neh2-NT) contains evolutionarily conserved motifs, we examined the roles they play in the degradation of Nrf2. In Neh2-NT, we defined a novel motif that is distinct from the previously characterized DIDLID motif and designated it DLG motif. Deletion of Neh2-NT or mutation of the DLG motif largely abolished the Keap1-mediated degradation of Nrf2. These mutations were found to enfeeble the binding affinity of Nrf2 to Keap1. The Neh2-NT subdomain directed DLG-dependent, Keap1-independent, degradation of a reporter protein in the nucleus. By contrast, mutation of DLG did not affect the half-life of native Nrf2 protein in the nucleus under oxidative stress conditions. These results thus demonstrate that DLG motif plays essential roles in the Keap1-mediated proteasomal degradation of Nrf2 in the cytoplasm. 相似文献