首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis was tested, through structural and functional studies, that interstitial cells of Cajal receive and can respond to direct innervation from nerves containing the vasoactive intestinal polypeptide neuromediator. The submucosal network of interstitial cells of Cajal has been postulated to provide pacemaking activity for the circular muscle and to be involved in neurotransmission from nonadrenergic, noncholinergic nerves for which vasoactive intestinal polypeptide is a putative mediator. The distribution of vasoactive intestinal polypeptide and substance P immunoreactive material in nerve profiles of the enteric nervous system of the canine colon was examined. In addition, electrophysiological studies were done on the interstitial cells bordering the submucosal side of the circular muscle layer after they were electrically isolated using heptanol. The vasoactive intestinal polypeptide immunoreactivity, located exclusively in nerve large granular vesicles, was found throughout the enteric nervous system (myenteric plexus, submucous plexus, and circular muscle--submucosa interface). The highest proportion (38% compared with 22-24%) of profiles of large granular vesicles with vasoactive intestinal polypeptide immunoreactivity was found in nerve profiles of the circular muscle--submucosa interface. In contrast, substance P immunoreactivity was found in nerve profiles of myenteric plexus (33% of large granular vesicles were positive) but not associated with submucosal interstitial cell nerve network. The vasoactive intestinal polypeptide hyperpolarized interstitial cells by 9 mV when electrically isolated by 1 mM heptanol and markedly reduced (about 50%) their input membrane resistance. We conclude that the distribution of vasoactive intestinal polypeptide immunoreactivity and its action are consistent with a postulated role of the interstitial cells as a major site of neurally mediated inhibition of colonic pacemaker activity.  相似文献   

2.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

3.
Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.  相似文献   

4.
Schistosoma mansoni infection induces severe gastrointestinal motility disturbances which are characterised by hyperactivity of intestinal muscle, abdominal pain, diarrhoea, vomiting and nausea. During schistosomiasis, the neuropeptide somatostatin is generated within inflammatory granulomas. However, somatostatin is also an important inhibitory modulator of gastrointestinal motility. In the present study, we have investigated the potential of somatostatin to reduce schistosomiasis-induced hyperactivity of gastrointestinal smooth muscle. Organ bath experiments were performed to study the contractility of isolated smooth muscle strips of intestine from control mice and from mice that were infected with S. mansoni for 2, 4, 8 and 16 weeks. Electrical field stimulation (0.5-8 Hz) of enteric nerves induced frequency-dependent neurogenic contractions of cholinergic origin in all regions of the small intestine. Somatostatin (0.1-1 microM) concentration-dependently inhibited the contractions to enteric nerve stimulation in the small intestine from uninfected control mice and from acutely S. mansoni infected mice (2 and 4 weeks of infection). After 8 weeks of infection with S. mansoni, this inhibitory effect of somatostatin was less pronounced and after 16 weeks of infection it was completely abolished. Histology demonstrated that chronic infection of mice with S. mansoni was associated with significant alterations in the musculature of the small intestine. These alterations may be associated with physiological changes in the responsiveness to somatostatin and suggest that the somatostatin neuroregulatory circuit of enteric neurotransmission in the small intestine is disturbed during chronic schistosomiasis mansoni.  相似文献   

5.
Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.  相似文献   

6.
The goal of this report is to summarise the current knowledge on the projection pathways of enteric neurones innervating the muscle and mucosa in different regions of the gut. Combination of neuronal tracing, immunohistochemical and electrophysiological methods has allowed researchers to gain insight into the enteric hardwiring of specific target tissue in the gut. A polarised innervation pattern of the circular muscle was demonstrated for the stomach fundus/corpus and the ileum with descending pathways being primarily nitrergic while ascending pathways were primarily cholinergic. This characteristic hardwiring is thought to set in part the functional basis for peristalsis. A similar polarised innervation pathway was found for the enteric innervation of the mucosa in the stomach and large intestine but not in the small intestine. In both the stomach (myenteric neurones) and in the proximal and distal colon (submucosal neurones), ascending pathways to the mucosa are primarily cholinergic while descending pathways are primarily non-cholinergic. In the colon, results suggest that activation of both pathways induces a cross potentiation of cholinergic and vasoactive intestinal polypeptidergic mediated secretion. Furthermore, a large population of myenteric neurone s projecting to the mucosa in the small and large intestine are probably intrinsic primary afferent neurones sensitive to mechanical as well as chemical stimuli.  相似文献   

7.
Gastrointestinal motility disorders are of considerable clinical importance in humans and animals. Abnormalities of smooth muscle and the enteric nervous system have been described. We have identified and characterized a new mutant stock of rats that develops severe megacecum and colon with pseudo-obstruction, Familial Megacecum and Colon (FMC). The inheritance pattern of FMC was characterized by selective breeding. Gastrointestinal motility was evaluated radiographically. Complete pathologic evaluations, including ultrastructural examination and staining of colonic segments for acetylcholinesterase, peripherin, vasoactive intestinal peptide, substance P, nitric oxide synthase, and somatostatin, were performed. Spontaneous contractility and contractile force in isolated colonic muscle strips were examined. Familial megacecum and colon is inherited as an autosomal recessive trait. The markedly dilated cecum and proximal portion of the colon are followed by a short, funnel-shaped segment and distal portion of the colon with normal or slightly reduced lumen. Although clinical features and gross anatomic changes of the colon resemble those of Hirschsprung's disease in humans and animals, aganglionosis is not a feature of FMC. An increase in somatostatin staining was observed in dilated regions of bowel. The spontaneous contractile frequency and contractile force were diminished in the affected colon. Familial megacecum and colon is a new mutant, distinct from previously described hereditary and targeted mutant rodent models that develop megacecum and colon as a result of distal colonic dysfunction. The functional or morphologic defect(s) that result in colonic dysfunction in rats with FMC was not determined. The disease may result from an absence or overexpression of a single or group of neurotransmitters or their respective neurons, receptor abnormalities, or defects in the intestinal pacemaker system.  相似文献   

8.
Fos expression was used to assess whether the proinflammatory cytokine interleukin-1beta (IL-1beta) activated specific, chemically coded neuronal populations in isolated preparations of guinea pig ileum and colon. Whether the effects of IL-1beta were mediated through a prostaglandin pathway and whether IL-1beta induced the expression of cyclooxygenase (COX)-2 was also examined. Single- and double-labeling immunohistochemistry was used after treatment of isolated tissues with IL-1beta (0.1-10 ng/ml). IL-1beta induced Fos expression in enteric neurons and also in enteric glia in the ileum and colon. For enteric neurons, activation was concentration-dependent and sensitive to indomethacin, in both the myenteric and submucosal plexuses in both regions of the gut. The maximum proportion of activated neurons differed between the ileal (approximately 15%) and colonic (approximately 42%) myenteric and ileal (approximately 60%) and colonic (approximately 75%) submucosal plexuses. The majority of neurons activated in the myenteric plexus of the ileum expressed nitric oxide synthase (NOS) or enkephalin immunoreactivity. In the colon, activated myenteric neurons expressed NOS. In the submucosal plexus of both regions of the gut, the majority of activated neurons were vasoactive intestinal polypeptide (VIP) immunoreactive. After treatment with IL-1beta, COX-2 immunoreactivity was detected in the wall of the gut in both neurons and nonneuronal cells. In conclusion, we have found that the proinflammatory cytokine IL-1beta specifically activates certain neurochemically defined neural pathways and that these changes may lead to disturbances in motility observed in the inflamed bowel.  相似文献   

9.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.  相似文献   

10.
In murine schistosomiasis mansoni, eggs deposited in the liver and intestines induce a cell-mediated granulomatous reaction. Previous studies have shown that maximal granuloma size differs in the liver and various segments of the gastrointestinal tract. The objective of this investigation was to isolate intestinal granulomas and to determine whether organ-dependent differences in cell composition and granuloma function exist. Intestinal granulomas representative of those in tissue were isolated by a combination of chemical and mechanical techniques. When dissociated by collagenase, these lesions yielded a viable heterogeneous population of inflammatory cells. Granulomas from the liver, colon, and ileum showed differences in cellular composition. Liver lesions contained the largest number of T and B lymphocytes, eosinophils, and mast cells whereas ileal granulomas comprised mostly macrophages. Immunofluorescence studies on frozen tissue sections revealed that T and B lymphocytes also displayed different patterns of distribution within granulomas from different tissues. In contrast to isolated cultured liver granulomas that produced MIF-like substances, isolated colonic and ileal granulomas had weak or no MIF activity. It thus appears that granuloma formation in various organs is influenced by local factors that could affect the ultimate resolution of the lesions.  相似文献   

11.
Mamba intestinal toxin (MIT(1)) isolated from Dendroaspis polylepis venom is a 81 amino acid polypeptide cross-linked by five disulphide bridges. MIT(1) has a very potent action on guinea-pig intestinal contractility. MIT(1) (1 nM) potently contracts longitudinal ileal muscle and distal colon, and this contraction is equivalent to that of 40 mM K(+). Conversely MIT(1) relaxes proximal colon again as potently as 40 mM K(+). The MIT(1)-induced effects are antagonised by tetrodotoxin (1 microM) in proximal and distal colon but not in longitudinal ileum. The MIT(1)-induced relaxation of the proximal colon is reversibly inhibited by the NO synthase inhibitor L-NAME (200 microM). (125)I-labelled MIT(1) binds with a very high affinity to both ileum and brain membranes (K(d)=1.3 pM and 0.9 pM, and B(max)=30 fmol/mg and 26 fmol/mg, respectively). MIT(1) is a very highly selective toxin for a receptor present both in the CNS and in the smooth muscle and which might be an as yet unidentified K(+) channel.  相似文献   

12.
Saffrey  M. J.  Marcus  N.  Jessen  K. R.  Burnstock  G. 《Cell and tissue research》1983,234(1):231-235
The occurrence of neurons possessing high-affinity uptake sites for GABA was studied in the myenteric plexus of the guinea-pig ileum, caecum, and proximal and distal colon, the rat proximal colon, and the chicken gizzard with the use of 3H-GABA and autoradiography. Experiments were carried out on plexuses that had been freshly isolated from the gut wall or on isolated plexuses that had been maintained as explant cultures for 7 to 14 days. Scattered neurons selectively labelled with 3H-GABA were found in the myenteric plexuses from all the areas examined. The results suggest that GABAergic neurons are widely distributed in the enteric nervous system.  相似文献   

13.
Neuromedin U-8 (NMU-8) is a peptide isolated from porcine spinal cord which contracts blood vessels and the uterus. Antisera were raised against NMU-8 and used in a radioimmunoassay (RIA) together with HPLC to characterize NMU-like immunoreactivity (NMU-LI) in tissues extracts of rat brain and gut and guinea pig gut. Samples of duodenum, ileum and distal colon were taken from both species, and processed for detection of NMU-LI by fluorescence immunohistochemistry. In RIA the antiserum had no cross-reactivity with neuropeptide Y, vasoactive intestinal peptide or the C-terminal hexapeptide of pancreatic polypeptide. Preincubation of antiserum with any of these peptides had no effect on the NMU-LI staining. In rats the highest content of NMU-LI was found in the ileum and the lowest in the cerebral cortex and striatum. HPLC studies showed that at least two molecular forms of NMU-LI were present in both species. In rat small intestine, subpopulations of submucous and myenteric neurones were stained; nerve fibres and terminals within these ganglia and in the mucosa were also seen. NMU-LI was sparse in the muscle. In guinea pig ileum small populations of nerve terminals were seen in both myenteric and submucous ganglionated plexuses. No endocrine cells were stained in either species.  相似文献   

14.
Cannabis has been used for centuries in the medicinal treatment of gastrointestinal disorders. Endogenous cannabinimimetic substances such as 2-arachidonylglycerol have been isolated from gut homogenates and CB1-cannabinoid binding sites have been identified in small intestine. In this study, CB1-cannabinoid receptors (CB1-R) were immunohistochemically localized within the enteric nervous system of the pig, an omnivorous species whose digestive tract is functionally similar to humans. Two anti-CB1-R antisera, raised against N-terminal epitopes in the human CB1-R, were employed to localize receptor immunoreactivity by secondary immunofluorescence. CB1-R immunoreactivity was observed in the myenteric and submucosal ganglionated plexuses of porcine ileum and colon. In the ileum, all CB1-R-immunoreactive neurons coexpressed immunoreactivity to the cholinergic marker, choline acetyltransferase (ChAT). CB1-R/ChAT-immunoreactive neurons appeared to be in close apposition to ileal Peyer's patches, submucosal blood vessels, and intestinal crypts. In the distal colon, CB1-R-immunoreactive neurons also expressed immunoreactivity to ChAT, albeit less frequently than in ileum. Immunoreactivity to vasoactive intestinal peptide or nitric oxide synthase was not colocalized in ileal or colonic CB1-R-immunoreactive neurons. These studies indicate that CB1-R are present in cholinergic neurons in the porcine enteric nervous system. The potential roles of these receptors in intestinal motility and epithelial transport, host defense and visceral pain transmission are discussed.  相似文献   

15.
The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested.  相似文献   

16.
VIP release from enteric nerves is independent of extracellular calcium   总被引:4,自引:0,他引:4  
The release of endogenous vasoactive intestinal polypeptide (VIP) from enteric nerves of isolated rat ileum and the role of extracellular calcium on the release mechanism have been investigated. Evaluation of simultaneous release of endogenous acetylcholine (ACh) and adenosine 5'-triphosphate (ATP) from enteric nerves was used to establish the reliability of the technique. Electrical field stimulation of the ileal preparation induced an increase in the release of endogenous ACh, ATP and VIP. The evoked, but not the basal, release of these substances was blocked by tetrodotoxin (TTX), indicating that the release was a result of nerve stimulation. However, while increase in release of ACh and ATP during nerve stimulation was suppressed in Ca2+-free medium and by the addition of the Ca2+ channel blocker cadmium, nerve-mediated VIP release was unaffected. Further, while K+-depolarization induced release of ACh and ATP from the ileal preparations, it did not lead to an increase in the release of VIP. These results demonstrate that, unlike ACh and ATP release, release of endogenous VIP from enteric nerves is independent of extracellular calcium. The implications of these results in terms of the mechanism of transmitter release in the gastrointestinal tract are discussed.  相似文献   

17.
18.
The endogenous cannabinoid system plays an important role in the regulation of gastrointestinal function in health and disease. Endocannabinoid levels are regulated by catabolic enzymes. Here, we describe the presence and localization of monoacylglycerol lipase (MGL), the major enzyme responsible for the degradation of 2-arachidonoylglycerol. We used molecular, biochemical, immunohistochemical, and functional assays to characterize the distribution and activity of MGL. MGL mRNA was present in rat ileum throughout the wall of the gut. MGL protein was distributed in the muscle and mucosal layers of the ileum and in the duodenum, proximal colon, and distal colon. We observed MGL expression in nerve cell bodies and nerve fibers of the enteric nervous system. There was extensive colocalization of MGL with PGP 9.5 and calretinin-immunoreactive neurons, but not with nitric oxide synthase. MGL was also present in the epithelium and was highly expressed in the small intestine. Enzyme activity levels were highest in the duodenum and decreased along the gut with lowest levels in the distal colon. We observed both soluble and membrane-associated enzyme activities. The MGL inhibitor URB602 significantly inhibited whole gut transit in mice, an action that was abolished in cannabinoid 1 receptor-deficient mice. In conclusion, MGL is localized in the enteric nervous system where endocannabinoids regulate intestinal motility. MGL is highly expressed in the epithelium, where this enzyme may have digestive or other functions yet to be determined.  相似文献   

19.
20.
Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号