首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.  相似文献   

4.
Atropa belladonna leaf disks were infected by a wild strain Agrobacterium rhizogenes 15834 harboring the Ri-TL-DNA and by a disarmed Agrobacterium tumefaciens strain harboring a construction with only rol ABC and npt II genes. Thirteen root lines were established and examined for their growth rate and alkaloid productivity to evaluate the possible role of rol genes in morphological differentiation and in tropane alkaloid formation. A great diversity has been observed in the growth rate of these 13 root lines. The root biomass increased up to 75 times. The total alkaloid contents were similar in the root lines obtained by infection with A. rhizogenes 15834 and A. tumefaciens rol ABC. The last ones accumulated between 4 (1.1 mg g(-1) DW) and 27 (8 mg g(-1) DW) times more alkaloids than the intact roots (0.3 mg g(-1) DW). This work has shown that the rol ABC genes were sufficient to increase tropane alkaloid production in A. belladonna hairy root cultures.  相似文献   

5.
The cDNAs encoding putrescine N-methyltransferase (PMT), which catalyzes the S-adenosylmethionine-dependent N-methylation of putrescine at the first committed step in the biosynthetic pathways of tropane alkaloids, were isolated from Atropa belladonna and Hyoscyamus niger. These PMTs, however, lacked the N-terminal tandem repeat arrays previously found in Nicotiana PMTs. AbPMT1 RNA was much more abundant in the root of A. belladonna than was AbPMT2 RNA. The 5'-flanking region of the AbPMT1 gene was fused to the beta-glucuronidase (GUS) reporter gene and transferred to A. belladonna. Histochemical analysis showed that GUS is expressed specifically in root pericycle cells and that the 0.3-kb 5'-upstream region was sufficient for pericycle-specific expression. Treatment of A. belladonna roots with methyl jasmonate did not up-regulate the expression of GUS or endogenous AbPMT genes. The regulation of tropane alkaloid biosynthesis is discussed and compared with that of nicotine biosynthesis.  相似文献   

6.
有害的中波紫外线(ultraviolet B,UV-B;280~320 nm)辐射影响植物的生长与发育。但也有研究证明,UV-B辐射可诱导生物碱合成。然而,UV-B辐射能否提高颠茄(Atropa belladonna L.)中托品烷类生物碱(tropane alkaloids,TAs)的含量尚未见报道。本研究以颠茄实生苗为材料,研究UV-B不同照射度强、时间(d数)对颠茄的氮代谢、生物碱含量及TAs代谢途径中的几个关键酶基因表达量的影响。结果表明,随着辐射天数的增加(5~30 d),低强度(LU,5 μW/cm2)UV-B处理与对照(无辐射)比较,硝态氮、莨菪碱、东莨菪碱含量无显著差异。然而,中等强度(MU,10 μW/cm2)和高强度(HU,15 μW/cm2)UV-B辐射,明显增加硝态氮含量,谷氨酰胺合成酶(glutamine synthetase,GS)、谷氨酸脱氢酶(glutamine dehydrogenase,GDH)活性明显高于对照。重要的是,中、高强度UV-B辐射显著降低了颠茄的叶片与茎中莨菪碱和东莨菪碱含量。荧光定量PCR揭示,莨菪碱合成的关键酶腐胺N 甲基转移酶(putrescine N methyltransferase,PMT)编码基因、莨菪碱-6-β-羟化酶(hyoscyamine-6-β-hydroxylase,H6H)基因表达呈高度组织特异性,主要是在根部表达。与对照比较,低强度照射25 d引起pmt在根部的表达量显著上调,而中、高强度照射导致其下调;h6h在根部的相对表达量随着处理强度的增加逐渐降低;托品酮还原酶Ⅰ(tropinone reductaseⅠ, TRⅠ)编码基因在叶片中的表达量较高,随照射强度的增加而升高。上述结果表明,低强度UV-B辐射促进氮代谢,有利于莨菪碱合成;而长期中、高强度UV-B辐射,尽管促进了谷氨酸代谢,但却使pmt和h6h表达降低,不利于莨菪碱和东莨菪碱的积累。总之,本研究结果显示,不同UV-B辐射强度和时间,对颠茄合成TAs的影响不同,可为大田试验生产莨菪碱提供有益的参考。  相似文献   

7.
Calystegines are a new group of polyhydroxy alkaloids with a nortropane skeleton. They were detected in Atropa belladonna root cultures by chromatographic methods (TLC, GC) and identified by NMR and mass spectroscopy. Their occurrence was examined in several species of the Solanaceae. The biosynthesis of these compounds is suggested to proceed via the tropane alkaloid pathway, the first metabolite being pseudotropine. A pseudotropine-forming tropinone reductase was isolated and characterized from Atropa belladonna root cultures. Further evidence is given for the significance of tropinone and pseudotropine in calystegine formation by feeding experiments that increased calystegine formation. 15N-tropinone was shown to be incorporated into calystegines.Abbreviations GC gas chromatography - TBON 8-thiabicyclo[3.2.1]octan-3-one - TLC thin-layer chromatography  相似文献   

8.
Y Scholl  D H?ke  B Dr?ger 《Phytochemistry》2001,58(6):883-889
Calystegines were measured in roots and aerial parts of Calystegia sepium. The accumulation appears developmentally regulated. Calystegine accumulation in hairy root cultures follows growth and reaches maximal values of 1,5 mg/g dry mass. 15N-Labelled tropinone was fed to root cultures and the incorporation of label into calystegines and further metabolites of the tropane alkaloid pathway was measured after 2, 4 and 6 days. Pseudotropine was completely labelled after 2 days, and calystegine A(3) was labelled faster than the calystegines of the B-group. 2,7-Dihydroxynortropane also incorporated 15N from tropinone and is suggested to be a by-product of the tropane alkaloid pathway leading to calystegines.  相似文献   

9.
10.
Hairy root cultures of Brugmansia suaveolens were set up by infection of root tips with Agrobacterium rhizogenes. The successful transformation was confirmed by analysing rolC and virC genes using polymerase chain reaction (PCR). Hairy root cultures were employed to study the formation of tropane alkaloids, such as hyoscyamine. The transformed cultures were incubated with potential elicitors, such as methyljasmonate, quercetin and salicylic acid in order to stimulate the biosynthesis of tropane alkaloids. Profile and amounts of tropane alkaloids were analysed using capillary GLC-MS. At least 18 different tropane alkaloids could be identified. Treatment of the cultures with 200 microM methyljasmonate increased the alkaloid accumulation 25-fold up to a level of 1 mg/g fresh weight as compared to untreated controls. Quercetin enhanced the alkaloid production 10 fold (0.4 mg/g fresh weight) within 24 h. In contrast 100 microM salicylic acid decreased alkaloids to a level of 1 microg/g fresh weight.  相似文献   

11.
12.
The tropane alkaloid scopolamine is synthesized in the pericycle of branch roots in certain species of the Solanaceae. The enzyme responsible for the synthesis of scopolamine from hyoscyamine is hyoscyamine 6 beta-hydroxylase (H6H). The gene for H6H was isolated from Hyoscyamus niger. It has an exon/intron organization very similar to those for ethylene-forming enzymes, suggesting a common evolutionary origin. The 827-bp 5' flanking region of the H6H gene was fused to the beta-glucuronidase (GUS) reporter gene and transferred to three solanaceous species by Agrobacterium-mediated transformation systems: H. niger and belladonna (Atropa belladonna), which have high and low levels, respectively, of H6H mRNA in the root, and tobacco (Nicotiana tabacum), which has no endogenous H6H gene. Histochemical analysis showed that GUS expression occurred in the pericycle and at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of hairy roots and plants of transgenic tobacco. In transgenic hairy roots and regenerated plants of belladonna, the root meristem was stained with GUS activity, except for a few transformants in which the vascular cylinder was also stained. These studies indicate that the cell-specific expression of the H6H gene is controlled by some genetic regulation specific to scopolamine-producing plants.  相似文献   

13.
Hairy root cultures were obtained from diploid and induced tetraploid plants of Datura stramonium and analyzed by gas chromatography/mass spectrometry. Twenty alkaloids (19 for diploid and 9 for tetraploid hairy root cultures) were identified. A new tropane ester 3-tigloyloxy-6-propionyloxy-7-hydroxytropane was identified on the basis of mass spectral data. Hyoscyamine was the main alkaloid in both diploid and tetraploid cultures. In contrast to diploid hairy roots, the percentage contributions of the alkaloids, with exceptions for hyoscyamine and apoatropine, were higher in the total alkaloid mixture of tetraploid hairy roots.  相似文献   

14.
The effects of oxygen on nicotine and tropane alkaloid production in root cultures of Duboisia myoporoides were investigated. Duboisia roots cultured in air produced both nicotine and tropane alkaloids equally. However, when roots were cultured in pure oxygen, the metabolic flux to tropane alkaloids increased, and that to nicotine alkaloids decreased. Intermediate product analysis by GC-MS showed an increase in tropine, but decreases in acetyl derivatives of tropane alkaloids and tropine esters with low-class fatty acids. Furthermore, hyoscyamine 6β-hydroxylase (H6H, EC 1.14.11.11, the key enzyme in the pathway from hyosyamine to scopolamine) also increased. These results suggest that pure oxygen contributes to scopolamine production not only by activating the biosynthetic steps for scopolamine, but also by inactivating the biosynthetic steps for nicotine and other tropine derivatives.  相似文献   

15.
Genetically transformed shooty teratomas of Atropa belladonna and a Duboisia leichhardtii x D. myoporoides hybrid were studied for biotransformation of tropane alkaloids in shake flasks and bioreactors. Although de novo synthesis of hyoscyamine and scopolamine was limited, shoots of both species were able to translocate and accumulate significant quantities of exogenous alkaloid. The maximum yield of scopolamine from hyoscyamine fed to the Duboisia hybrid shoots was 35% w/w; the yield of the scopolamine precursor, 6beta-hydroxyhyoscyamine, was 37% w/w. Biotransformation activity was poor in A. belladonna shooty teratomas provided with exogenous hyoscyamine; however, scopolamine levels comparable with those in leaves of the whole plant accumulated in shoots fed with hairy root extract. Coculture of A. belladonna shooty teratomas and hairy roots in the same hormone-free medium was investigated as a means of providing a continuous source of hyoscyamine for conversion to scopolamine. Of the biotransformation systems tested with A. belladonna, coculture produced the highest levels of scopolamine and the highest scopolamine: hyoscyamine ratios. Cocultured shoots accumulated up to 0.84 mg g(-1) dry weight scopolamine, or 3-11 times the average concentrations found in leaves of the whole plant. The scopolamine: hyoscyamine ratio in coculture ranged from 0.07 to 1.9, a significant improvement over levels of 0-0.03 normally found in A. belladonna hairy roots. Addition of Pluronic F-68 or copper sulfate to the medium and variation in initial medium pH did not improve hyoscyamine release from hairy roots. Scopolamine levels were increased using 1 muM copper sulfate or initial medium pH between 6.0 and 8.0; however, results from elicitation of hairy roots could not match the beneficial effect on scopolamine synthesis of root-shoot coculture. Addition of 0.001-1.0% (w/v) Pluronic F-68 to the roots reduced hyoscyamine release but postponed necrosis in the root tissue for up to 60 d. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
The variability of the contents of tropane and isoquinoline alkaloids, ashes, Na, K, Ca, Mg, Fe, Mn, Cu, Zn, Co, Mo, Cr, Al, Ba, V, Ni, Sr, Cd, Pb, J, and Ag was studied in individual plants of the industrial population of belladonna (Atropa belladonna L.) and yellow horned poppy (Glaucium flavum Crantz.). Numerous linear and nonlinear correlations of isoquinoline and tropane alkaloids with ashes and mineral elements were revealed by means of correlation and regression analyses. Alkaline earth elements (especially Sr and Ba) were shown to have a major role in the regulation of tropane alkaloid accumulation in belladonna leaves. K and Ni were of particular importance in the aerial part of yellow horned poppy. These elements at the suboptimal concentrations were most favorable for isoquinoline alkaloid accumulation in yellow horned poppy. Analytical mathematical models were derived for the regulation of alkaloid metabolism in test plants by some mineral elements (Ba, Mg, Al, Sr, Ni, Mn, and K). Our results indicate that the interrelation between alkaloids and elements in these plants is genetically determined.  相似文献   

17.
Putrescine:SAM N-methyltransferase (PMT) catalyses the N-methylation of the diamine putrescine to form N-methylputrescine, the first specific precursor of both tropane and pyridine-type alkaloids, which are present together in the roots of Duboisia plants. The pmt gene of Nicotiana tabacum was placed under the regulation of the CaMV 35S promoter and introduced into the genome of a scopolamine-rich Duboisia hybrid by a binary vector system using the disarmed Agrobacterium tumefaciens strain C58C1 carrying the rooting plasmid pRiA4. The presence of the foreign gene in kanamycin-resistant hairy roots and its overexpression were confirmed by polymerase chain reaction and Northern blot analysis respectively. The N-methylputrescine levels of the resulting engineered hairy roots increased (2-4-fold) compared to wild type roots, but there was no significant increase in either tropane or pyridine-type alkaloids.  相似文献   

18.
Hairy root cultures of Hyoscyamus muticus have been shown to produce stable levels of tropane alkaloids comparable to those found in whole plants. In contrast, cell cultures of this and other solanaceous species produce only trace amounts of alkaloids but can be used for selection of metabolic variants. We have taken advantage of both systems and the ability to convert between them in vitro in an effort to select for increased production of the tropane alkaloid hyoscyamine. Hairy roots were converted into cell suspensions by addition of 1 mg/L 2,4-dichlorophenoxyacetic acid to Murashige-Skoog medium (T. Murashige and F. Skoog [1962] Physiol Plant 15: 473-497) and screened for resistance to the amino acid analog p-fluorophenylalanine (PFP). Cells that could grow in media containing 400 [mu]M PFP were selected and cloned from single cells. The resistant cells accumulated high levels of cinnamoyl putrescines, which share the same biosynthetic precursors as hyoscyamine. Hairy root cultures were regenerated from both PFP-sensitive and PFP-resistant cells by removing 2,4-dichlorophenoxyacetic acid from the medium. Resistance to PFP continued to be expressed in regenerated roots. Higher levels of hyoscyamine were found in hairy roots regenerated from PFP-resistant cells than were found in controls. We suggest that the precursors overproduced by the PFP-resistant cells can be diverted into the hyoscyamine pathway upon the regeneration of root cultures.  相似文献   

19.
California poppy (Eschscholzia californica Cham.) root cultures produce a variety of benzophenanthridine alkaloids, such as sanguinarine, chelirubine and macarpine, with potent biological activity. Sense and antisense constructs of genes encoding the berberine bridge enzyme (BBE) were introduced into California poppy root cultures. Transgenic roots expressing BBE from opium poppy (Papaver somniferum L.) displayed higher levels of BBE mRNA, protein and enzyme activity, and increased accumulation of benzophenanthridine alkaloids compared to control roots transformed with a -glucuronidase gene. In contrast, roots transformed with an antisense-BBE construct from California poppy had lower levels of BBE mRNA and enzyme activity, and reduced benzophenanthridine alkaloid accumulation, relative to controls. Pathway intermediates were not detected in any transgenic root lines. Suppression of benzophenanthridine alkaloid biosynthesis using antisense-BBE also reduced the growth rate of the root cultures. Two-dimensional 1H-NMR spectroscopy showed no difference in the abundance of carbohydrate metabolites in the various transgenic roots lines. However, transformed roots with low levels of benzophenanthridine alkaloids contained larger cellular pools of certain amino acids compared to controls. In contrast, cellular pools of several amino acids were reduced in transgenic roots with elevated benzophenanthridine alkaloid levels relative to controls. The relative abundance of tyrosine, from which benzophenanthridine alkaloids are derived, was only marginally altered in all transgenic root lines; thus, altering metabolic flux through benzophenanthridine alkaloid pathways can affect cellular pools of specific amino acids. Consideration of such interactions is important for the design of metabolic engineering strategies that target benzophenanthridine alkaloid biosynthesis.  相似文献   

20.
Hyoscyamus muticus hairy root clones were established following infection with Agrobacterium rhizogenes strains A4, LBA-9402 and 15834 and with A. tumefaciens strain C58C1pRTGus104. The accumulation of tropane alkaloids hyoscyamine, littorine and scopolamine was evaluated by micellar electrokinetic capillary electrophoresis. Littorine was reported for the first time in these clones as well as in the roots of the intact plant and confirmed by collision induced dissociation-mass spectrometry. Tropane alkaloid content in hairy roots was compared with leaves and roots of normal plants at two vegetative stages. Significant differences appeared between the alkaloid contents of the different clones. In particular, all the hairy root clones and the roots of the intact plant produced 1.5-3 and 4.5-9 times more littorine than scopolamine, respectively. The only exception was clone KB7, carrying the h6h gene, which overproduced scopolamine. The aerial parts of H. muticus plants did not contain any littorine, thus indicating different transportation or translocation mechanisms of the various tropane alkaloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号