首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lactococcus lactis subsp. lactis 712 lacG gene encoding phospho-beta-galactosidase was isolated from the lactose mini-plasmid pMG820 and cloned and expressed in Escherichia coli and L. lactis. The low phospho-beta-galactosidase activity in L. lactis transformed with high-copy-number plasmids containing the lacG gene contrasted with the high activity found in L. lactis containing the original, low-copy-number lactose plasmid pMG820, and indicated that the original lactose promoter was absent from the cloned DNA. In E. coli the phospho-beta-galactosidase could be overproduced using the strong inducible lambda PL promoter, which allowed a rapid purification of the active enzyme. The complete nucleotide sequence of the L. lactis lacG gene and its surrounding regions was determined. The deduced amino acid sequence was confirmed by comparison with the amino acid composition of the purified phospho-beta-galactosidase and its amino-terminal sequence. This also allowed the exact positioning of the lacG gene and identification of its characteristic Gram-positive translation initiation signals. The homologous expression data and the sequence organization of the L. lactis lacG gene indicate that the gene is organized into a large lactose operon which contains an intergenic promoter located in an inverted repeat immediately preceding the lacG gene. The organization and sequence of the L. lactis lacG gene were compared with those of the highly homologous lacG gene from Staphylococcus aureus. A remarkable bias for leucine codons was observed in the lacG genes of these two species. Heterogramic homology was observed between the deduced amino acid sequence of the L. lactis phospho-beta-galactosidase, that of the functionally analogous E. coli phospho-beta-glucosidase, and that of an Agrobacterium beta-glucosidase (cellobiase).  相似文献   

2.
Lactose metabolism in Lactobacillus casei 64H is associated with the presence of plasmid pLZ64. This plasmid determines both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and beta-D-phosphogalactoside galactohydrolase. A shotgun clone bank of chimeric plasmids containing restriction enzyme digest fragments of pLZ64 DNA was constructed in Escherichia coli K-12. One clone contained the gene coding for beta-D-phosphogalactoside galactohydrolase on a 7.9-kilobase PstI fragment cloned into the vector pBR322 in E. coli strain chi 1849. The beta-D-phosphogalactoside galactohydrolase enzyme isolated from E. coli showed no difference from that isolated from L. casei, and specific activity of beta-D-phosphogalactoside galactohydrolase was stimulated 1.8-fold in E. coli by growth in media containing beta-galactosides. A restriction map of the recombinant plasmid was compiled, and with that information, a series of subclones was constructed. From an analysis of the proteins produced by minicells prepared from transformant E. coli cells containing each of the recombinant subclone plasmids, it was found that the gene for the 56-kilodalton beta-D-phosphogalactoside galactohydrolase was transcribed from an L. casei-derived promoter. The gene for a second protein product (43 kilodaltons) was transcribed in the opposite direction, presumably under the control of a promoter in pBR322. The relationship of this second product to the lactose metabolism genes of L. casei is at present unknown.  相似文献   

3.
One of the chromosomal regions of Pseudomonas syringae pv. syringae encoding pathogenicity factors had been mapped into a 3.9-kilobase-pair fragment in previous studies. Promoter probe analysis indicated the existence of a promoter near one end of the fragment. DNA sequencing of this fragment revealed the existence of a consensus promoter sequence in the region of the promoter activity and two open reading frames (ORFs) downstream. These ORFs, ORF1 and ORF2, encoded putative polypeptides of 40 and 83 kilodaltons, respectively. All ORF1::Tn5 as well as ORF2::Tn5 mutant strains were nonpathogenic on susceptible host bean plants and were unable to elicit hypersensitive reactions on nonhost tobacco plants. The deduced amino acid sequence of the 83-kilodalton polypeptide contained features characteristic of known integral membrane proteins. Fusion of the lacZ gene to ORF2 led to the expression of a hybrid protein inducible in Escherichia coli. The functions of the putative proteins encoded by ORF1 and ORF2 are unknown at present.  相似文献   

4.
Molecular cloning and expression of Corynebacterium glutamicum genes complementing Escherichia coli mutations thrA2 and ilvA was performed. It was demonstrated that the thrA2 gene of C. glutamicum is located close to thrB on EcoRI DNA fragment 4.1 kb long. The fragment was cloned in pUC18 vector. The thrA2 gene is expressed in the recombinant plasmid pOBT3 under control of the vector pUC18 Plac promoter. In E. coli minicells, the genes thrA2 and thrB determined synthesis of proteins of Mr 43kD and 25 kD, respectively. A gene complementing ilvA mutation of E. coli was identified in a library of EcoRI C. glutamicum DNA fragments. This library was constructed using plasmid vector. It was shown that the ilvA gene of C. glutamicum is located inside the 3.6 kb EcoRI fragment and is expressed using its own promoter.  相似文献   

5.
The egl gene of Pseudomonas solanacearum was cloned on a cosmid and expressed in Escherichia coli. Restriction endonuclease mapping, transposon mutagenesis, and subclone analysis showed that the egl gene was located on a 2.7-kilobase XhoI-SalI P. solanacearum DNA fragment. Immunoabsorption experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed that the egl gene encodes the 43-kilodalton endoglucanase that is the major excreted endoglucanase of P. solanacearum. In E. coli, the egl gene appeared to be expressed from its own promoter, but its product was restricted to the cytoplasm. The cloned egl gene was mutagenized with Tn5 and used to specifically mutate the chromosomal egl gene of P. solanacearum by site-directed mutagenesis. The resultant mutant was identical to the wild-type strain in production of extracellular polysaccharide and extracellular polygalacturonase as well as several other excreted proteins but produced at least 200-fold less endoglucanase. This mutant strain was significantly less virulent on tomato than the wild-type strain in plant bioassay experiments. Virulence of the endoglucanase-deficient strain was restored to near wild-type levels by complementation in trans with the cloned egl gene, indicating that the egl gene is important but not absolutely required for pathogenesis.  相似文献   

6.
We have cloned a 13 kb Escherichia coli DNA fragment which complemented the rfe mutation to recover the biosynthesis of E. coli O9 polysaccharide. Using Tn5 insertion inactivation, the rfe gene was localized at the 1.5 kb HindIII-EcoRI region flanking the rho gene. We constructed an rfe-deficient E. coli K-12 mutant by site-directed inactivation using a DNA fragment of the cloned 1.5 kb rfe gene. This also confirmed the presence of the rfe gene in the 1.5 kb region. By simultaneous introduction of both the rfe plasmid and the plasmid of our previously cloned E. coli O9 rfb into this rfe mutant, we succeeded in achieving in vivo reconstitution of O9 polysaccharide biosynthesis. From sequence analysis of the rfe gene, a putative promoter followed by an open reading frame (ORF) was identified downstream of the rho gene. This ORF coincided with the position of the rfe gene determined by Tn5 analysis and site-directed mutagenesis. Furthermore, we identified the rff genes in the 10.5 kb DNA flanking the rfe gene. We recognized at least two functional domains on this cloned rff region. Region I complemented a newly found K-12 rff mutant, A238, to synthesize the enterobacterial common antigen (ECA). Deletion of region II resulted in the synthesis of ECAs with shorter sugar chains. When the 10.5 kb rff genes of the plasmid were inactivated by either deletion or Tn5 insertion, the plasmid lost its ability to give rise to transformants of the rfe mutants.  相似文献   

7.
The Tn10-like constitutively expressed tetracycline resistance determinant from a Haemophilus parainfluenzae strain was cloned in Escherichia coli. Toxicity resulting from expression on multicopy plasmids necessitated its being cloned on a low-copy plasmid vector or in cells containing the Tn10-encoded repressor. Constitutive expression of tetracycline resistance was found to result from the synthesis of a truncated inactive repressor molecule. Instead of the 23-kilodalton repressor found in other Tn10-containing strains, this determinant encoded a 14.5-kilodalton molecule. The DNA sequence of the 700-base-pair region spanning the repressor gene and promoter-operator regions of the Haemophilus determinant was identical to that of the same region of Tn10, except for the absence of a single T X A base pair in the repressor gene. This deletion leads to premature termination of the protein. Antisera to the repressor suggested that the repressor was also absent in a second independently isolated H. parainfluenzae strain bearing a Tn10-like constitutive tetracycline resistance determinant.  相似文献   

8.
9.
10.
The conjugative transfer (tra) genes of a 52-kilobase (kb) staphylococcal plasmid, pGO1, were localized by deletion analysis and transposon insertional inactivation. All transfer-defective (Tra-) deletions and Tn551 or Tn917 transposon insertions occurred within a 14.5-kb BglII fragment. Deletions and insertions outside this fragment all left the plasmid transfer proficient (Tra+). The tra region was found to be flanked by directly repeated DNA sequences, approximately 900 base pairs in length, at either end. Clones containing the 14.5-kb BglII fragment (pGO200) and subclones from this fragment were constructed in Escherichia coli on shuttle plasmids and introduced into Staphylococcus aureus protoplasts. Protoplasts could not be transformed with pGO200E (pGO200 on the staphylococcal replicon, pE194) or subclones containing DNA at one end of the tra fragment unless pGO1 or specific cloned tra DNA fragments were present in the recipient cell. However, once stabilized by sequences present on a second replicon, each tra fragment could be successfully introduced alone into other plasmid-free S. aureus recipients by conjugative mobilization or transduction. In this manner, two clones containing overlapping fragments comprising the entire 14.5-kb BglII fragment were shown to complement each other. The low-frequency transfer resulted in transconjugants containing one clone intact, deletions of that clone, and recombinants of the two clones. The resulting recombinant plasmid (pGO220), which regenerated the tra region intact on a single replicon, transferred at frequencies comparable to those of pGO1. Thus, all the genes necessary and sufficient for conjugative transfer of pGO1 are contained within a 14.5-kb region of DNA.  相似文献   

11.
12.
A 2.7-kilobase Sau3A fragment of Spirochaeta aurantia DNA cloned in pBR322 complemented a trpE deletion in Escherichia coli. Deletion analysis and Tn5 mutagenesis of the resulting plasmid pBG100 defined a 2-kilobase-pair region that was required for both the complementation and the synthesis of 59,000- and 47,000-molecular-weight polypeptides (59K and 47K polypeptides) in maxicells. Both the 59K and the 47K polypeptides appear to be encoded by a single gene. A maxicell analysis of pBG100::Tn5 mutants suggests that the 47K polypeptide is not sufficient for the trpE complementation. In vitro and in vivo anthranilate synthetase (AS) assays indicate that the complementing activity encoded by pBG100 was functionally analogous to the AS component I of E. coli in that it utilized NH3 but not glutamine as the amino donor. pBG100 did not encode a glutamine amidotransferase activity, although the AS component I it encoded was capable of interacting with E. coli AS component II to catalyze the glutamine-requiring reaction. Expression appeared to depend on a promoter in the cloned S. aurantia DNA.  相似文献   

13.
The mutation drpA1 defines a new gene in Escherichia coli K-12 that maps at about 5.2 min. This mutation was obtained after enriching a population of cells for temperature sensitive dna mutations with the [3H]thymidine "suicide" technique followed by screening for mutants defective in transposon Tn5 precise excision. When growing cells carrying the drpA1 allele were shifted to the nonpermissive temperature, we showed that DNA, RNA, and protein syntheses shut off quickly, with the cessation of RNA synthesis occurring first. A recombinant plasmid between pBR322 and an HindIII fragment from wild-type E. coli restores the growth defect in drpA1 mutants. Using transposon Tn5 mutagenesis of this plasmid, we have been able to correlate the presence of a 68-kilodalton protein, as observed with the maxicell technique, with the ability of this plasmid to restore growth to drpA1 mutants.  相似文献   

14.
15.
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin.  相似文献   

16.
Pseudomonas sp. strain 593, a soil bacterium, is able to use exogenous choline to synthesize phosphatidylcholine via phosphatidylcholine synthase (Pcs). A 2020 bp DNA fragment that hybridized to a Pcs probe was cloned. This fragment contained a large open reading frame (ORF) with two potential ATG start sites that would encode for 293 and 231 amino acid proteins. Fragments containing the two ORFs encoded Pcs when they were inserted into the expression vector pET23a and expressed under the control of the T7 promoter in Escherichia coli BL21(DE3) pLysS. However, when the two ORFs were inserted into the cloning vector pMD18-T and expressed without control of the plasmid promoter in E. coli DH5α, only the larger clone exhibited Pcs activity. This suggested that the larger fragment contained a native promoter driving expression of the smaller ORF. A promoter activity assay, in which DNA fragments were inserted into the promoter-probe plasmid pCB182 and β-galactosidase activity of E. coli transformants was tested, demonstrated that a promoter is indeed present in the DNA region. All results together indicate that the 696 bp ORF, not the larger 897 bp ORF, encodes the Pcs in Pseudomonas sp. strain 593 and carries a promoter in front of its 5' terminus.  相似文献   

17.
The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation.  相似文献   

18.
The translation products of chromosomal DNAs of Pseudomonas aeruginosa encoding phospholipase C (heat-labile hemolysin) have been examined in T7 promoter plasmid vectors and expressed in Escherichia coli cells. A plasmid carrying a 4.7-kilobase (kb) DNA fragment was found to encode the 80-kilodalton (kDa) phospholipase C as well as two more proteins with an apparent molecular mass of 26 and 19 kDa. Expression directed by this DNA fragment with various deletions suggested that the coding region for the two smaller proteins was contained in a 1-kb DNA region. Moreover, the size of both proteins was reduced by the same amount by an internal BglII-BglII DNA deletion, suggesting that they were translated from overlapping genes. Similar results were obtained with another independently cloned 6.1-kb Pseudomonas DNA, which in addition coded for a 31-kDa protein of opposite orientation. The nucleotide sequence of the 1-kb region above revealed an open reading frame with a signal sequence typical of secretory proteins and a potential in-phase internal translation initiation site. Pulse-chase and localization studies in E. coli showed that the 26-kDa protein was a precursor of a secreted periplasmic 23-kDa protein (PlcR1) while the 19-kDa protein (PlcR2) was mostly cytoplasmic. These results indicate the expression of Pseudomonas in-phase overlapping genes in E. coli.  相似文献   

19.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

20.
C Li  H D Peck  Jr    A E Przybyla 《Journal of bacteriology》1986,165(2):644-646
A PyrF- mutant of Escherichia coli (SK1108, pyrF::Tn5 Kanr) was complemented with the Desulfovibrio vulgaris (Hildenborough) structural gene for orotidine-5'-phosphate decarboxylase (EC 4.1.1.23). Either orientation of a 1.6-kilobase-pair D. vulgaris DNA fragment (pLP3B or pLP3A) complemented the PyrF- strain suggesting that the D. vulgaris pyrF promoter was functional. The apparent product of the D. vulgaris pyrF gene was a single 26-kilodalton polypeptide. These results demonstrate the utility of E. coli cloning systems in studying metabolic and energetic pathways in sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号