首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

2.
We have determined the fidelity of DNA synthesis by DNA polymerase I (yPol I) from Saccharomyces cerevisiae. To determine whether subunits other than the polymerase catalytic subunit influence fidelity, we measured the accuracy of yPol I purified by conventional procedures, which yields DNA polymerase with a partially proteolyzed catalytic subunit and no associated primase activity, and that of yPol I purified by immunoaffinity chromatography, which yields polymerase having a single high-molecular-weight species of the catalytic subunit, as well as three additional polypeptides and DNA primase activity. In assays that score polymerase errors within the lacZ alpha-complementation gene in M13mp2 DNA, yPol I and the yPol I-primase complex produced single-base substitutions, single-base frameshifts, and larger deletions. For specific errors and template positions, the two forms of polymerase exhibited differences in fidelity that could be as large as 10-fold. Nevertheless, results for the overall error frequency and the spectrum of errors suggest that the yPol I-DNA primase complex is not highly accurate and that, just as for the polymerase alone, its fidelity is not sufficient to account for a low spontaneous mutation rate in vivo. The specificity data also suggest models to explain -1 base frameshifts in nonrepeated sequences and certain complex deletions by a direct repeat mechanism involving aberrant loop-back synthesis.  相似文献   

3.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

4.
The ability of Escherichia coli DNA polymerase I and T7 DNA polymerase to bypass bulky C-8 guanyl-2-aminofluorene adducts in DNA was studied by in vitro DNA synthesis reactions on a site-specific aminofluorene-modified M13mp9 template. This site-specifically modified DNA was prepared by ligating an oligonucleotide containing a single aminofluorene adduct into a gapped heteroduplex of M13mp9 DNA (Johnson, D. L., Reid, T. M., Lee, M.-S., King, C. M., and Romano, L. J. (1986) Biochemistry 25, 449-456). The resulting covalently closed duplex DNA molecule was then cleaved with a restriction endonuclease, denatured, and annealed to a primer on the 3' side of the adduct to form a template specifically designed to study bypass. In this system, any synthesis that was not blocked by the bulky aminofluorene adduct would proceed to the 5' terminus of the single-stranded template, while synthesis interrupted by the adduct would terminate at or near the adduct location. We have measured DNA synthesis on this template and find that the amount of radiolabeled nucleotide incorporated by either E. coli DNA polymerase I (large fragment) or T7 DNA polymerase was much greater than would be predicted if the aminofluorene adduct were an absolute block to DNA synthesis. Furthermore, the products of similar reactions electrophoresed on polyacrylamide gels showed conclusively that the majority of the DNA synthesized by either the T7 DNA polymerase or E. coli DNA polymerase I bypassed the aminofluorene lesion. Substitution of Mn2+ for Mg2+ as the divalent cation resulted in even higher levels of translesion synthesis.  相似文献   

5.
Depending on the ionic environment the replicative complex of silkworm Bombyx mori, containing DNA polymerase alpha and primase, catalyzes on single-stranded DNA of phage M13 a NTP-dependent synthesis or elongation of preformed primers. In the presence of NTPs and dNTPs at conditions optimal for the NTP-dependent synthesis the replicative complex synthesizes on M13 DNA oligoribonucleotides of 9-11 residues, which serve as primers for polymerization of DNA. The length of RNA-primers synthesized by primase of the complex depends on concentration of dNTP but does not depend on activity of DNA polymerase alpha. During elongation of exogenic primers annealed to M13 DNA the complex is processive synthesizing DNA fragments of dozens residues without dissociation from the template. Double-stranded structures in DNA such as "hairpins" appear to be barriers for driving of the complex along the template and cause pauses in elongation. DNA-binding proteins the SSB of Escherichia coli or the p32 of phage T4 destabilize double-stranded regions in DNA and eliminate elongation pauses corresponding to these regions. The replicative complex is able to fill in single-stranded gaps in DNA completely and to perform slowly the synthesis with displacement of one of parent strands in duplexes via repeated cycles of binding to the primer-template, limited elongation and dissociation.  相似文献   

6.
The replication of M13 single-stranded DNA by the 9S DNA polymerase alpha from calf thymus has been studied in vitro. Priming conditions, the nature of the replication products and conditions for optimal elongation have been investigated. Oligonucleotides comprising only four nucleotides can serve as primers. Both ribo and deoxy oligonucleotides can be elongated. Priming by the short oligonucleotides occurs at multiple sites on the M13 genome. If replication is primed at single sites with a specific pentadecamer or with RNA in the origin of replication, specific pausing sites are observed. These pausing sites can partly be correlated with secondary structures in the template DNA. Addition of Escherichia coli single-stranded DNA binding protein leads to a weakening of pausing sites and to the synthesis of longer products. The 9S enzyme is able to proceed through most of the pausing sites resulting in the synthesis of product molecules as long as 6600 nucleotides. The 9S DNA polymerase alpha contains a potent DNA primase activity which enables it to initiate replication on a single-stranded template in the presence of the four NTPs . However, priming is also possible in the presence of ATP alone. The priming sites are not randomly distributed over the M13 DNA.  相似文献   

7.
DNA primase has been partially purified from wheat germ. This enzyme, like DNA primases characterized from many procaryotic and eucaryotic sources, catalyses the synthesis of primers involved in DNA replication. However, the wheat enzyme differs from animal DNA primase in that it is found partially associated with a DNA polymerase which differs greatly from DNA polymerase alpha. Moreover, the only wheat DNA polymerase able to initiate on a natural or synthetic RNA primer is DNA polymerase A. In this report we describe in greater detail the chromatographic behaviour of wheat DNA primase and its copurification with DNA polymerase A. Some biochemical properties of wheat DNA primase such as pH optimum, Mn + 2 or Mg + 2 optima, and temperature optimum have been determined. The enzyme is strongly inhibited by KCI, cordycepine triphosphate and dATP, and to a lesser extent by cAMP and formycine triphosphate. The primase product reaction is resistant to DNAse digestion and sensitive to RNAse digestion. Primase catalyses primer synthesis on M13 ssDNA as template allowing E.coli DNA polymerase I to replicate the primed M13 single-stranded DNA leading to double-stranded M13 DNA (RF). M13 replication experiments were performed with wheat DNA polymerases A, B, CI and CII purified in our laboratory. Only DNA polymerase A is able to recognize RNA-primed M13 ssDNA.  相似文献   

8.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

9.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

10.
Preferential transfection with M13mp2 RF DNA synthesized in vitro   总被引:2,自引:0,他引:2  
R C Hayes  J E LeClerc 《Gene》1983,21(1-2):1-8
Single-strand DNA binding protein (SSB) from Escherichia coli abolishes transfection of E.coli by viral M13mp2 DNA at levels that inhibit transfection by M13mp2 replicative form (RF) DNA by approx. 25%. Synthesis of M13mp2 RF DNA (SS leads to DS) has been carried out using DNA polymerase I (Klenow fragment) and a unique 15-nucleotide primer. A time course for in vitro synthesis showed that the increase in transfection in the presence of SSB paralleled DNA synthesis after an initial lag period for transfection. Digestion of replication products with restriction endonucleases and S1 endonuclease indicates that only those molecules that are fully or almost fully duplex transfect competent cells in the presence of SSB.  相似文献   

11.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus and that the ribonucleotide-dependent DNA synthesis is more sensitive to araCTP than DNA-primed DNA synthesis (Yoshida, S., et al. (1983) Biochim. Biophys. Acta 741, 348-357). Here we measured DNA primase activity using poly(dT) template or M13 bacteriophage single-stranded DNA template and primer RNA synthesis was coupled to the reaction by Escherichia coli DNA polymerase I Klenow fragment. By this method, the primer RNA synthesis can be measured independently of the associating DNA polymerase alpha. Using poly(dT) template, it was found that arabinosyladenine 5'-triphosphate (araATP) strongly inhibited DNA primase in competition with rATP. The apparent Ki for araATP was 21 microM and the ratio of Ki/Km (for rATP) was as low as 0.015. With poly(dI, dT) or M13 DNA, it was shown that araCTP also inhibited DNA primase in the similar manner. Product analysis using [alpha-32P]rATP showed that araATP inhibited the elongation of primer RNA. However, it is not likely that arabinosylnucleotides act as chain-terminators, since incubation of primer RNA with araATP did not abolish its priming activity. From these results, it is suggested that arabinosylnucleotide inhibits the initiation as well as elongation of Okazaki fragments in mammalian cells.  相似文献   

12.
13.
Unfractionated protein extracts from activated Xenopus laevis eggs contain all functions required for the chain elongation reactions in replicative DNA synthesis (A.Richter, B.Otto and R.Knippers, 1981, Nucl.Ac.Res. 9, 3793-3807). In order to further explore the DNA synthesizing capacity of this in vitro system and to obtain information on the DNA priming activity in these extracts single stranded phage M13-DNA was used as template for in vitro DNA synthesis. The main results of this investigation are: (i) single stranded circular template DNA is converted to a double stranded DNA form in an alpha-amanitin-insensitive reaction which is absolutely dependent on ribonucleoside triphosphates; (ii) the in vitro synthesized complementary strands are DNA fragments of 1000-2000 nucleotides lengths; (iii) the DNA primase activity copurifies through several column steps and sucrose gradient centrifugation with a DNA polymerase alpha. These activities may therefore be closely associated in a quarternary enzyme complex.  相似文献   

14.
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold.  相似文献   

15.
Hypoxanthine?xanthine oxidase?Fe3+?ethylenediaminetetraacetate (EDTA) was used to modify ss M13 mp18 phage DNA. The dominant base modifications found by GC/IDMS-SIM were FapyGua, FapyAde, 8-hydroxyguanine, and thymine glycol. Analysis of in vitro DNA synthesis on oxidatively modified template by three DNA polymerases revealed that T7 DNA polymerase and Klenow fragment of polymerase I from Escherichia coli were blocked mainly by oxidized pyrimidines in the template whereas some purines that were easily bypassed by the prokaryotic polymerases constituted a block for DNA polymerase beta from calf thymus. DNA synthesis by T7 polymerase on poly(dA) template, where FapyAde content increased 16-fold on oxidation, yielded a final product with a discrete ladder of premature termination bands. When DNA synthesis was performed on template from which FapyAde, FapyGua, and 8OHGua were excised by the Fpg protein new chain terminations at adenine and guanine sites appeared or existing ones were enhanced. This suggests that FapyAde, when present in DNA, is a moderately toxic lesion. Its ability to arrest DNA synthesis depends on the sequence context and DNA polymerase. FapyGua might possess similar properties.  相似文献   

16.
The primase activity of DNA polymerase alpha from calf thymus   总被引:14,自引:0,他引:14  
The nearly homogeneous 9 S DNA polymerase alpha from calf thymus contains a primase activity that allows priming of DNA synthesis on single-stranded templates in the presence of ribonucleoside triphosphates. Both on synthetic and natural single-stranded templates, RNA primers of 8-15 nucleotides in length are formed. In the absence of dNTPs, primers of some hundred nucleotides in length are observable. ATP and/or GTP are required for the priming reaction. UTP and CTP cannot initiate the RNA synthesis. M13 single-stranded DNA can be converted to the nicked double helical form upon primase-primed replication by the 9 S enzyme. Priming occurs mostly at specific sites on the M13 genome and replication products of up to 6000 nucleotides in length are formed. In the presence of the single-stranded DNA binding protein from Escherichia coli, specificity of priming is strongly increased. The primase is inhibited by salt and actinomycin; it is insensitive to alpha-amanitin and N-ethylmaleimide. Due to the strong complex formation between DNA polymerase and primase, it has not been possible to separate the two activities of the multisubunit 9 S enzyme.  相似文献   

17.
The mouse DNA primase-DNA polymerase alpha complex can be resolved with buffer containing 50% ethylene glycol (Suzuki, M., Enomoto, T., Hanaoka, F., and Yamada, M. (1985) J. Biochem. (Tokyo) 98, 581-584). The dissociated primase and DNA polymerase alpha have been purified sufficiently that there was no cross-contamination with each other. By the use of thus isolated DNA primase and DNA polymerase alpha in addition to DNA primase-DNA polymerase alpha complex, we have studied primer RNA synthesis and DNA elongation separately as well as the coupled reaction of the initiation and elongation of DNA chains. In the absence of deoxyribonucleoside triphosphates, the isolated primase synthesized oligoribonucleotides of an apparent length of 7-11 nucleotides (monomeric oligomer) and multiples of a modal length of 9-10 nucleotides (multimeric oligomer) and fd phage single-stranded circular DNA. Monomeric and dimeric oligomers were synthesized processively, and trimeric and larger oligomers were produced by repeated cycles of processive synthesis. The primase complexed with DNA polymerase alpha mainly synthesized monomeric and a small amount of dimeric oligomers. In the presence of deoxyribonucleoside triphosphates at concentrations above 10 microM, the DNA primase-DNA polymerase alpha complex exclusively synthesized monomeric oligomers only, which were utilized as primers for DNA synthesis. On the other hand, the products synthesized by the isolated primase were qualitatively unchanged as compared with those synthesized in the absence of DNA precursors. When the synthesis of oligomers by the isolated primase was coupled with DNA elongation by the addition of the primase-free DNA polymerase alpha, the synthesis of dimeric oligomers was inhibited as a result of efficient DNA elongation from monomeric oligomers.  相似文献   

18.
The effect of Escherichia coli single-stranded DNA binding protein (SSB) on DNA synthesis by T7 DNA polymerase and E. coli DNA polymerase I (large fragment) using native or aminofluorene-modified M13 templates was evaluated by in vitro DNA synthesis assays and polyacrylamide gel electrophoresis analysis. The two polymerase enzymes displayed differential responses to the addition of SSB. T7 DNA polymerase, a enzyme required for the replication of the T7 chromosome, was stimulated by the addition of SSB whether native or modified templates were used. On the other hand, E. coli DNA polymerase I was slightly stimulated by the addition of SSB to the native template but substantially inhibited on modified templates. This result suggests that DNA polymerase I may be able to synthesize past an aminofluorene adduct but that the presence of SSB inhibited this trans-lesion synthesis. Polyacrylamide gels of the products of DNA synthesis by polymerase I supported this inference since SSB caused a substantial increase in the accumulation of shorter DNA chains induced by blockage at the aminofluorene adduct sites.  相似文献   

19.
T Kodadek  H Gamper 《Biochemistry》1988,27(9):3210-3215
We report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, we report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. We demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.  相似文献   

20.
Biochemical fractionation of the yeast Saccharomyces cerevisiae has revealed a novel DNA primase activity that copurifies with the major DNA polymerase activity. In the presence of RNA precursors and single-stranded DNA (poly(dT), M13), the DNA primase synthesizes discrete length oligoribonucleotides (apparent length, 8-12 nucleotides) as well as longer RNA chains that appear to be multiples of a modal length of 11-12 nucleotides. When DNA precursors are also present, the oligoribonucleotides are utilized by the accompanying DNA polymerase as primers for DNA synthesis. Copurification of these two enzymatic activities suggests their association in a physical complex which may function in the synthesis of Okazaki fragments at chromosomal replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号