首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method of brush border membrane vesicle (BBMV) preparation from the small intestinal mucosa using polyethylene glycol (PEG) precipitation has been presented. This preparation is compared with calcium-precipitated BBMVs in marker enzyme enrichment, contamination by other subcellular membranes, transport of glucose, and lipid composition. PEG-precipitated BBMVs are comparable with calcium-precipitated membranes in all parameters except lipid composition and thiol content. PEG-precipitated membranes have more phosphatidylcholine and phosphatidylethanolamine and less lysophosphatidylcholine and lysophosphatidylethanolamine as compared to calcium-precipitated membranes. Diacylglycerol and triacylglycerol content are also high in PEG-precipitated membranes. Alteration in lipid composition indicate the possible activation of lipase and phospholipase by calcium during BBMV preparation, which is not seen in PEG precipitation. Thiol content is almost double in PEG-precipitated membranes as compared to calcium-precipitated membranes. These results indicate that PEG can be used for the preparation of BBMVs in native form from the intestine without any alteration in their structural components, and these membranes show comparable transport activity.  相似文献   

2.
Intervessel pits act as safety valves that prevent the spread of xylem embolism. Pectin-calcium crosslinks within the pit membrane have been proposed to affect xylem vulnerability to cavitation. However, as the chemical composition of pit membranes is poorly understood, this hypothesis has not been verified. Using electron microscopy, immunolabeling, an antimonate precipitation technique, and ruthenium red staining, we studied the distribution of selected polysaccharides and calcium in the pit membranes of four angiosperm tree species. We tested whether shifts in xylem vulnerability resulting from perfusion of stems with a calcium chelating agent corresponded with the distribution of pectic homogalacturonans (HG) and/or calcium within interconduit pit membranes. No HG were detected in the main part of intervessel pit membranes, but were consistently found in the marginal membrane region known as the annulus. Calcium colocalized with HG in the annulus. In contrast to intervessel pits, the membrane of vessel-ray pits showed a high pectin content. The presence of two distinct chemical domains, the annulus and the actual pit membrane, can have substantial implications for pit membrane functioning. We propose that the annulus could affect the observed shift in xylem vulnerability after calcium removal by allowing increased pit membrane deflection.  相似文献   

3.
Impedance and potential measurements have been made on a number of artificial membranes. Impedance changes were determined as functions of current and of the composition of the environmental solutions. It was shown that rectification is present in asymmetrical systems and that it increases with the membrane potential. The behavior in pairs of solutions of the same salt at different concentrations has formed the basis for the studies although a few experiments with different salts at the same concentrations gave results consistent with the conclusions drawn. A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures. The equations have been solved for two very simple cases; one based on the assumption of microscopic electroneutrality, and the other on the assumption of a constant electric field. The latter was found to give better results than the former in interpreting the data on potentials and rectification, showing agreement, however, of the right order of magnitude only. Although the indications are that a careful treatment of boundary conditions may result in better agreement with experiment, no attempt has been made to carry this through since the data now available are not sufficiently complete or reproducible. Applications of the second theoretical case to the squid giant axon have been made showing qualitative agreement with the rectification properties and very good agreement with the membrane potential data.  相似文献   

4.
When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa.  相似文献   

5.
Using an assay which allows continuous monitoring of the mixing of aqueous contents during membrane fusion, we have investigated the kinetics of calcium-phosphate-induced fusion of erythrocyte ghosts. In the presence of 10 mM phosphate, the threshold concentration for Ca2+-induced fusion was 1.25 mM, while the optimal concentration was approx. 1.75 mM Ca2+. Further enhancement of the cation concentration (greater than or equal to 2 mM) inhibited fusion of the ghosts. Initiation of fusion required the addition of phosphate prior to the addition of Ca2+, indicating that the combined interaction of Ca2+ and phosphate in or at the plane of the bilayer was a prerequisite for the induction of fusion. Furthermore, fusion was greatly facilitated upon transformation of calcium phosphate in the bulk medium from an amorphous to a solid, crystalline phase. It is suggested that membrane aggregation, and hence fusion, is facilitated by the formation of crystalline calcium phosphate nucleating on the ghost membrane. La3+, Mg2+ and Mn2+ did not trigger the fusion process, although aggregation of the ghosts did occur. Under conditions where calcium phosphate precipitation was inhibited, lanthanum phosphate precipitates facilitated fusion after prior treatment of ghosts with phosphate and Ca2+. These results indicated that fusion-prone conditions were induced prior to calcium phosphate precipitation. It is proposed that prior to calcium phosphate precipitation membrane changes are induced by separate interaction of Ca2+ and phosphate with the ghost membrane. Such an interaction could then render the ghosts susceptible to fusion and as soon as conditions are provided allowing close contact between adjacent membranes, fusion will be observed.  相似文献   

6.
The isolation of brush-border membranes from trout enterocytes is described for both middle and posterior intestine. Both procedures are based on differential centrifugations combined with calcium precipitation. Classical marker enzymes are quantified and indicate a valuable purification of the membranes (13-18-fold). No difference appears when comparing the relative amounts of phospholipids, cholesterol and proteins in microvillus membranes isolated from either middle or posterior intestine. In contrast, the membranes isolated from middle intestine are more unsaturated than those from the posterior one, and their sphingomyelin/phosphatidylcholine ratio is lower. These differences are reflected by fluorescence anisotropy studies with diphenylhexatriene as lipid fluorophore which indicate a higher fluidity of the microvillus membranes from the middle intestine as compared with those from the posterior intestine. These results point out the importance of the fatty acyl chains and that of the relative amounts of phosphatidylcholine and sphingomyelin in controlling the fluidity of biological membranes in relation with their transport properties.  相似文献   

7.
Summary The role of the amoebocytes in the calcification process of the shell-repair membrane of the snail, Helix pomatia, was investigated in vitro. The shell-repair membranes were demineralized with 0.5 M EDTA at pH 7.4. For the recalcification of the demineralized membranes two substrates were chosen: (i) Tris-buffered Helix pomatia-saline, pH 7.4, and (ii) Helix pomatia-saline supplemented with 5 mM CaCl2 and 5 mM NaHCO3. The membranes were incubated in 2 ml substrate at 37° C and examined after 2 h, 24 h, and 3, 5 and 7 days. Calcium deposition and crystal formation were observed within the membrane incubated in the salt-supplemented substrate. The control membranes were either heat-inactivated or deprived of lipids. No calcium precipitation was observed in control membranes. The experiments show that the recalcification of the shell-repair membrane is under strict cellular control and that the granules released from the amoebocytes serve as sites for calcium deposition. The role of phospholipids in the calcification process is discussed.  相似文献   

8.
The interaction of calcium with gangliosides in bilayer membranes   总被引:1,自引:0,他引:1  
We studied the binding of calcium to bilayer membranes formed from mixtures of phosphatidylcholine and mono-, di-, or trisialoganglioside by measuring its effect on the electrophoretic mobility of multilamellar vesicles and the conductance of planar bilayers. In 0.001 M monovalent salt solutions the surface potential of the membranes is large and micromolar concentrations of calcium have a significant effect on the mobility and conductance. In 0.1 M monovalent salt solutions the surface potential is small and millimolar concentrations of calcium are required to affect these parameters. The strong apparent binding of calcium we observed at low ionic strength could be due to the nonspecific accumulation of calcium in the electrical diffuse double layer. To distinguish between this nonspecific effect and binding of calcium to the membrane, we substituted dimethonium for calcium. Dimethonium is a divalent cation that screens negative charges but does not bind to lipids. We also examined the effect of replacing phosphatidylcholine by monoolein: calcium binds to phosphatidylcholine but not to monoolein. We describe our electrophoretic mobility results by combining the Poisson-Boltzmann and Navier-Stokes equations with the Langmuir adsorption isotherm. We conclude that calcium binds weakly to gangliosides with an intrinsic association constant of less than 100 M-1, which is similar to the association constant of calcium with phospholipids.  相似文献   

9.
Summary The current-voltage equations for double, triple, and quadruple membrane systems are derived in closed form from the flow equations of irreversible thermodynamics. Numerical examples show that the behavior of these systems is very similar to that of nerve and muscle membranes. Multiple membrane systems exhibit resting potentials which do not have a characteristic Nernst concentration dependence; nonpermeant ions play a significant role in this nonlogarithmic behavior. Furthermore, multiple membrane systems have rectification properties similar to those of biological membranes. The direction of rectification is determined by the polarity of the membrane systems, not by the ionic concentrations in the bathing solutions.  相似文献   

10.
Pawns are behavioural mutants (in one of three genes) of Paramecium aurelia that have lost, to varying degrees, the reversal response which is thought to depend on the calcium influx during excitation. This report shows that all of the single and double mutants have reduced active inward (calcium) current, the reduction correlating with the degree of behavioural deficit. All of the mutants display normal resting potential, input impedance and delayed rectification. Mutants in genes pwA and pwC show normal anomalous rectification, but pwB mutants do not show anomalous rectification until the membrane is hyperpolarized further. We suggest that the pwA gene plays a role in depolarization sensitivity (the 'gate') and the pwB gene a role affecting either the wall of the channel itself or the total number of channels.  相似文献   

11.
Suzuki K  Shono M  Egawa Y 《Protoplasma》2003,222(3-4):149-156
Summary. Blossom-end rot (BER) of tomato (Lycopersicon esculentum) fruits is considered to be a physiological disorder caused by calcium deficiency. We attempted to clarify the localization of calcium in the pericarp cells and the ultrastructural changes during the development of BER. Calcium precipitates were observed as electron-dense deposits by an antimonate precipitation method. Some calcium precipitates were localized in the cytosol, nucleus, plastids, and vacuoles at an early developmental stage of normal fruits. Calcium precipitates were increased markedly on the plasma membrane during the rapid-fruit-growth stage compared with their level at the early stage. Cell collapse occurred in the water-soaked region at the rapid-fruit-growth stage in BER fruits. There were no visible calcium precipitates on the traces of plasma membrane near the cell wall of the collapsed cells. The amount of calcium precipitates on plasma membranes near collapsed cells was smaller than that in the cells of normal fruits and normal parts of BER fruits, and the amount on cells near collapsed cells was small. The amount of calcium precipitates on the plasma membranes increased as the distance from collapsed cells increased. On the other hand, calcium precipitates were visible normally in the cytosol, organelles, and vacuoles and even traces of them in collapsed cells. The distribution pattern of the calcium precipitates on the plasma membrane was thus considerably different between normal and BER fruits. On the basis of these observations, we concluded that calcium deficiency in plasma membranes caused cell collapses in BER tomato fruits.Correspondence and reprints: National Institute of Vegetable and Tea Science, National Agricultural Research Organization, Ano, Mie, 514-2392, Japan.  相似文献   

12.
Aimsto design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease.MethodsPolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests.ResultsPrecipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect.ConclusionsThe ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.  相似文献   

13.
The calcium uptake into renal brush border membrane vesicles, which has been purified from normal or vitamin B6 deficient rat renal cortex by calcium precipitation, was investigated. The values of Km and Vmax were determined to be 1.89 mM and 4.26 nmol of Ca2+/mg of protein per 20s in vitamin B6 deficient rats, respectively. This Vmax was lower than that of normal rats. The chemical compositions of renal brush border membranes did not display a difference in normal and vitamin B6 deficient rats. The amount of brush border membranes isolated from 1 gram of renal cortex in vitamin B6 deficient rats was less than in normal rats.  相似文献   

14.
The addition of nanomolar amounts of a toxin preparation derived from the sea anemone Stoichactis helianthus to black lipid membranes increases their electrical conductance by one million-fold. In addition, the membranes become permeable predominantly to monovalent cations. The elevated bilayer conductance is voltage-dependent, and the current-voltage curves of these bilayers display rectification as well as a region of negative resistance. The membrane activity of the toxin is proportional to the third power of its concentration, and at very low concentrations the membrane conductance increases in discrete uniform steps. These observations indicate that the mechanism of toxin action involves the formation of transmembrane channels constructed by the aggregation of protein molecules which are inserted in the bilayer. The voltage-dependent membrane conductance arises from two distinct channel characteristics: (1) the unit conductance of individual channels is dependent on the polarity of applied voltage; (2) the number of ion-conducting channels is influenced by the polarity as well as the magnitude of applied potential. It is believed that these effects are due to the influence of an electric field on the insertion of toxin molecules into the bilayer or on their subsequent association with each other to produce channels. Partial chemical characterization of the toxin material has shown that the membrane active factor is a basic protein with a molecular weight of 17 500.  相似文献   

15.
The addition of nanomolar amounts of a toxin preparation derived from the sea anemone Stoichactis helianthus to black lipid membranes increases their electrical conductance by one million-fold. In addition, the membranes become permeable predominantly to monovalent cations. The elevated bilayer conductance is voltage-dependent, and the current-voltage curves of these bilayers display rectification as well as a region of negative resistance. The membrane activity of the toxin is proportional to the third power of its concentration, and at very low concentrations the membrane conductance increases in discrete uniform steps. These observations indicate that the mechanism of toxin action involves the formation of transmembrane channels constructed by the aggregation of protein molecules which are inserted in the bilayer. The voltage-dependent membrane conductance arises from two distinct channel characteristics: (1) the unit conductance of individual channels is dependent on the polarity of applied voltage; (2) the number of ion-conducting channels is influenced by the polarity as well as the magnitude of applied potential. It is believed that these effects are due to the influence of an electric field on the insertion of toxin molecules into the bilayer or on their subsequent association with each other to produce channels. Partial chemical characterization of the toxin material has shown that the membrane active factor is a basic protein with a molecular weight of 17,500.  相似文献   

16.
The aim of the present study was to: (1) identify the nature of fouling for ED membranes (AMX and CMB, from Tokuyama Soda, Japan) used for the isolation and concentration of total NH(3)-N from swine manure, (2) determine the effect of fouling on membrane integrity, (3) establish the relation between fouling type and manure composition, and (4) estimate the efficiency of a two-step cleaning procedure to restore membranes properties. After processing 10 batches of swine manure (or 240 L/m(2)), the average current density as well as the membranes electrical conductivity and ion-exchange capacity decreased. The decline in process performance was associated with membrane fouling, since a significant deposit, possibly calcium carbonate and silica colloidal particles, was observed on the fouled AMX membranes. The electrical conductivity and ion-exchange capacity of the CMB membrane was completely restored by a two-step cleaning procedure using 0.5% NaOH and 1% HCl. However, for the electrical conductivity of the AMX membranes it was only partially recovered. The on-line cleaning procedure efficiency was assessed by measuring the stack average current density and the decrease of manure conductivity during 1h tests. Values for the cleaned membranes were, respectively, 95% and 91% the ones measured with the new membranes, and were significantly higher than for the fouled membranes.  相似文献   

17.
The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half ‘Ussing chambers’ with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite–brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main mineral precipitation events occurred. Additionally, the organic fluids from freshwater bivalves should be also thoroughly researched in the applied biomedical field, as mineral nucleators and crystal modulators on biosynthetic systems.  相似文献   

18.
19.
Using a modified sucrose gap technique action potential and phase plane trajectories of trabeculae from the left rabbit's auricle were recorded. By means of a numerical treatment and some mathematical model interpretations from these measurements current-voltage-(I-V)-relationships and the amount of inward transported calcium are calculated. A time independent K+-current shows that a voltage region within the anomalous rectification should exist. By acetylcholine the anomalous rectification is abolished and the inward transported amount of Ca-ions by the action potential (Q) decreases. A conductance of the K+-current gK will be dimished by decreasing the extracellular calcium concentration. The amount of inward transported calcium does not change significantly by variation of the extracellular calcium concentration. The calcium amount Q should contribute 17% of the calcium necessary for maximum contraction.  相似文献   

20.
Based on our own data on generation of spindle-like field electrical activity in neuronal barrels of the rat somatic cortex and also on the published data on the properties of voltage-dependent channels in the membranes of cortical cells, we developed a model of the ensemble (simple network) of neurons connected by electrical synapses. Such connections were found earlier in neurophysiological and ultramicroscopic studies. Model neurons with membranes having sodium, potassium, and calcium channels described in the literature were capable of generating bursting rhythmic impulse activity under conditions of switching off of synaptic connections between cells (isolation). With switching on of electrical synapses, spiking generated by separate neurons, which initially was nonsynchronous, became synchronized in time. Ipso facto, we demonstrated the ability of pacemaker oscillatory activity to be electrotonically synchronized in ensembles of neurons connected with electrical synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号