首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of proton transfer across the membrane via the external proton channel in bacteriorhodopsin is considered. A possible amino acid composition of the channel is suggested and the step-by-step mechanism of proton transfer is proposed which agrees with the experimental data. The rate of proton transfer between fixed centers at several chains of the channel was estimated for which the spectroscopic data are available.  相似文献   

2.
Xiaoxia Ge  M. R. Gunner 《Proteins》2016,84(5):639-654
Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long‐range proton translocation between the central (the retinal Schiff base SB216, D85, and D212) and exit clusters (E194 and E204) remains elusive. To obtain a dynamic view of the key factors controlling proton translocation, a systematic study using molecular dynamics simulation was performed for eight bacteriorhodopsin models varying in retinal isomer and protonation states of the SB216, D85, D212, and E204. The side‐chain orientation of R82 is determined primarily by the protonation states of the residues in the EC. The side‐chain reorientation of R82 modulates the hydrogen‐bond network and consequently possible pathways of proton transfer. Quantum mechanical intrinsic reaction coordinate calculations of proton‐transfer in the methyl guanidinium‐hydronium‐hydroxide model system show that proton transfer via a guanidinium group requires an initial geometry permitting proton donation and acceptance by the same amine. In all the bacteriorhodopsin models, R82 can form proton wires with both the CC and the EC connected by the same amine. Alternatively, rare proton wires for proton transfer from the CC to the EC without involving R82 were found in an O′ state where the proton on D85 is transferred to D212. Proteins 2016; 84:639–654. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
In the last few years, detailed structural information from high-resolution x-ray diffraction has been added to the already large body of spectroscopic and mutational data on the bacteriorhodopsin proton transport cycle. Although there are still many gaps, it is now possible to reconstruct the main events in the translocation of the proton and how they are coupled to the photoisomerization of the retinal chromophore. Future structural work will concentrate on describing the details of the individual proton transfer steps during the photocycle.  相似文献   

4.
The scheme of the bacteriorhodopsin photocycle associated with a transmembrane proton transfer and electrogenesis is considered. The role of conformational changes in the polypeptide chain during the proton transport is discussed.  相似文献   

5.
It was shown that the substitution of the CF3 group in the structure of retinal for the methyl group at C13 causes not only a decrease in the affinity of the proton for the nitrogen in the Schiff base (pK ~ 8.4) but also considerably changes the photochemical properties of the bacteriorhodopsin analog. At pH > 6.5, the rate of the Schiff base reprotonation during M decay depends on the proton concentration in the medium. In the photocycle of the yellow M-like form with the deprotonated Schiff base, a long-wavelength product absorbing at 625 nm is formed, which has a similar pH dependence of decay kinetics. The two processes also have similar activation energies (about 15 ± 1 kcal/mol). It is concluded that both cases involve proton transfer from an aqueous medium through the donor part of the channel to the Schiff base and Asp96, respectively. In the analog, however, the structure of water molecules necessary for the stabilization of the proton on the Schiff base is broken. As a result, dehydration of the preparation gives rise to a fraction of M-like form of bacteriorhodopsin with the deprotonated Schiff base.  相似文献   

6.
Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its color turned to blue with a pKa of 3.5 and a Hill coefficient of 2. Diffraction data at pH 2-5 indicated that the purple-to-blue transition accompanies a large structural change in the proton release channel; i.e. the extracellular half of helix C moves towards helix G, narrowing the proton release channel and expelling a water molecule from a micro-cavity in the vicinity of the retinal Schiff base. In this respect, the acid-induced structural change resembles the structural change observed upon formation of the M intermediate. But, the acid blue form contains a sulfate ion in a site(s) near Arg82 that is created by re-orientations of the carboxyl groups of Glu194 and Glu204, residues comprising the proton release complex. This result suggests that proton uptake by the proton release complex evokes the anion binding, which in turn induces protonation of Asp85, a key residue regulating the absorption spectrum of the chromophore. Interestingly, a pronounced structural change in the proton release complex was also observed at high pH; i.e. re-orientation of Glu194 towards Tyr83 was found to take place at around pH 10. This alkaline transition is suggested to be accompanied by proton release from the proton release complex and responsible for rapid formation of the M intermediate at high pH.  相似文献   

7.
The possible mechanisms of electrogenic processes accompanying proton transport in bacteriorhodopsin are discussed on the basis of recent structural data of the protein. Apparent inconsistencies between experimental data and their interpretation are considered. Special emphasis is placed on the protein conformational changes accompanying the reprotonation of chromophore and proton uptake stage in the bacteriorhodopsin photocycle.  相似文献   

8.
Bacteriorhodopsin is a prototype of efficient molecular machinery functioning as a light-activated proton pump. Among the five distinct intermediates (K, L, M, N, and O) of the photocycle, there is less structural information on the later stages compared with the early intermediates. Here, we report the structural modeling of the O-intermediate for which the determination of experimental structure remains difficult. Hypothetical conformational change of the molecule from the light-adapted state to the O-intermediate state was simulated by gradually changing the protonation state of two residues. To achieve accurate molecular modeling, we carefully constructed a realistic system of the native purple membrane. The modeled structure of the O-intermediate has some implications about proton transfer in the later stages of the photocycle and the structural response of bacteriorhodopsin to the inner charge distribution.  相似文献   

9.
Channelrhodopsins serve as photoreceptors that control the motility behavior of green flagellate algae and act as light-gated ion channels when heterologously expressed in animal cells. Here, we report direct measurements of proton transfer from the retinylidene Schiff base in several channelrhodopsin variants expressed in HEK293 cells. A fast outward-directed current precedes the passive channel current that has the opposite direction at physiological holding potentials. This rapid charge movement occurs on the timescale of the M intermediate formation in microbial rhodopsins, including that for channelrhodopsin from Chlamydomonas augustae and its mutants, reported in this study. Mutant analysis showed that the glutamate residue corresponding to Asp85 in bacteriorhodopsin acts as the primary acceptor of the Schiff-base proton in low-efficiency channelrhodopsins. Another photoactive-site residue corresponding to Asp212 in bacteriorhodopsin serves as an alternative proton acceptor and plays a more important role in channel opening than the primary acceptor. In more efficient channelrhodopsins from Chlamydomonas reinhardtii, Mesostigma viride, and Platymonas (Tetraselmis) subcordiformis, the fast current was apparently absent. The inverse correlation of the outward proton transfer and channel activity is consistent with channel function evolving in channelrhodopsins at the expense of their capacity for active proton transport.  相似文献   

10.
The light-driven proton pump bacteriorhodopsin occurs naturally as two-dimensional crystals. A three-dimensional density map of the structure, at near-atomic resolution, has been obtained by studying the crystals using electron cryo-microscopy to obtain electron diffraction patterns and high-resolution micrographs. New methods were developed for analysing micrographs from tilted specimens, incorporating methods previously developed for untilted specimens that enable large areas to be analysed and corrected for distortions. Data from 72 images, from both tilted and untilted specimens, were analysed to produce the phases of 2700 independent Fourier components of the structure. The amplitudes of these components were accurately measured from 150 diffraction patterns. Together, these data represent about half of the full three-dimensional transform to 3.5 A. The map of the structure has a resolution of 3.5 A in a direction parallel to the membrane plane but lower than this in the perpendicular direction. It shows many features in the density that are resolved from the main density of the seven alpha-helices. We interpret these features as the bulky aromatic side-chains of phenylalanine, tyrosine and tryptophan residues. There is also a very dense feature, which is the beta-ionone ring of the retinal chromophore. Using these bulky side-chains as guide points and taking account of bulges in the helices that indicate smaller side-chains such as leucine, a complete atomic model for bacteriorhodopsin between amino acid residues 8 and 225 has been built. There are 21 amino acid residues, contributed by all seven helices, surrounding the retinal and 26 residues, contributed by five helices, forming the proton pathway or channel. Ten of the amino acid residues in the middle of the proton channel are also part of the retinal binding site. The model also provides a useful basis for consideration of the mechanism of proton pumping and allows a consistent interpretation of a great deal of other experimental data. In particular, the structure suggests that pK changes in the Schiff base must act as the means by which light energy is converted into proton pumping pressure in the channel. Asp96 is on the pathway from the cytoplasm to the Schiff base and Asp85 is on the pathway from the Schiff base to the extracellular surface.  相似文献   

11.
A mechanism of proton transfer along the proton channel of (F0) ATP-synthetase of a membrane is suggested. In the small polaron model the charged fault (an excess of protons or a proton hole) transfer is considered in a longitudinal electric field along an assumed chain which is formed by hydroxyl groups connected by strong H-bonded chains. A number of kinetic parameters are estimated. The theoretical data are compared with the experimental results.  相似文献   

12.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

13.
Photo-excited structural changes of the light-driven proton pump bacteriorhodopsin were monitored using double-site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy. The inter-spin distances between nitroxides attached at residue positions 100 and 226, 101 and 160, and 101 and 168 were determined for the BR initial state and the trapped M photo-intermediate. Distance changes that occur during the photocycle were followed with millisecond time resolution under physiological conditions at 293 K. The kinetic analysis of the EPR data and comparison with the absorbance changes in the visible spectrum reveal an outward movement of helix F during the late M intermediate and a subsequent approach of helix G toward the proton channel. The displacements of the cytoplasmic moieties of these helices amount to 0.1-0.2 nm. We propose that the resulting opening of the proton channel decreases the pK of the proton donor D96 and facilitates proton transfer to the Schiff base during the M-to-N transition.  相似文献   

14.
Glucose-embedded bacteriorhodopsin shows M-intermediates with different Amide I infrared bands when samples are illuminated at 240 or 260 K, in contrast with fully hydrated samples where a single M-intermediate is formed at all temperatures. In hydrated, but not in glucose-embedded specimens, the N intermediate is formed together with M at 260 K. Both Fourier transform infrared and electron diffraction data from glucose-embedded bacteriorhodopsin suggest that at 260 K a mixture is formed of the M-state that is trapped at 240 K, and a different M-intermediate (MN) that is also formed by mutant forms of bacteriorhodopsin that lack a carboxyl group at the 96 position, necessary for the M to N transition. The fact that an MN species is trapped in glucose-embedded, wild-type bacteriorhodopsin suggests that the glucose samples lack functionally important water molecules that are needed for the proton transfer aspartate 96 to the Schiff base (and, thus, to form the N-intermediate); thus, aspartate 96 is rendered ineffective as a proton donor.  相似文献   

15.
Pressure experiments with freeze-dried bacteriorhodopsin indicate that water is an essential part of the chromophore. This observation is combined with already known information on (a) the pH dependence of proton pumping, (b) the secondary protein-chromophore interaction with lysine-40, and (c) the proton transfer in the initial photochemical step to give a detailed structure of the active site and a mechanism for proton pumping which is consistent with the bacteriorhodopsin polypeptide sequence.  相似文献   

16.
Correspondence of phases of electrogenesis, photocycle transitions, and proton transfer with the proton transporting groups of bacteriorhodopsin was studied. The structure of bacteriorhodopsin was considered by the file 1c3w and projections of sites of the proton movement pathway onto the normal to the purple membrane were measured. The dielectric permeability of the terminal site of the semichannel Schiff base external surface of the purple membrane was noticeably higher than in the center of the membrane.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1725–1728.Original Russian Text Copyright © 2004 by Khitrina, Ksenofontov.  相似文献   

17.
All six available lysine residues in bacteriorhodopsin were amidinated with dimethyl-3,3'-dithiobispropionimidate, which is a crosslinking agent. The photocycle was studied by measuring light absorption and electric signals. The data show an essential change in the photocycle: instead of single components, the rise of the signal due to the M intermediate can be decomposed into two components, and the decay into three. The life-times and the intensities of these components and in general the proton pumping activity of bacteriorhodopsin depend only negligibly upon pH. Changes upon removing the crosslinks are not significantly different from those in the crosslinked samples. The lysine residues therefore may not be considered of primary importance in proton translocation.  相似文献   

18.
Light-induced changes of the proton affinities of amino acid side groups are the driving force for proton translocation in bacteriorhodopsin. Recent progress in obtaining structures of bacteriorhodopsin and its intermediates with an increasingly higher resolution, together with functional studies utilizing mutant pigments and spectroscopic methods, have provided important information on the molecular architecture of the proton transfer pathways and the key groups involved in proton transport. In the present paper I consider mechanisms of light-induced proton release and uptake and intramolecular proton transport and mechanisms of modulation of proton affinities of key groups in the framework of these data. Special attention is given to some important aspects that have surfaced recently. These are the coupling of protonation states of groups involved in proton transport, the complex titration of the counterion to the Schiff base and its origin, the role of the transient protonation of buried groups in catalysis of the chromophore's thermal isomerization, and the relationship between proton affinities of the groups and the pH dependencies of the rate constants of the photocycle and proton transfer reactions.  相似文献   

19.
Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular “lever,” whose one end links to a “piston” (the β-ionone ring) and the other end to a pump “relay station” (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular “lever” is moving up and down as marked by the position change of the “piston,” so as to trigger the gate of pore to open and close alternately. When the “piston” is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the “piston” is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.  相似文献   

20.
Proton pumping by bacteriorhodopsin and charge-compensating ion movement can both and simultaneously behave as the rate-limiting step in light-driven proton uptake into bacteriorhodopsin liposomes. This apparently excessive control exerted on the net proton influx is possible because of the negative (-1) 'control coefficient' of the net proton influx with respect to the proton leaks. Furthermore, the property of bacteriorhodopsin that it is inhibited by the membrane potential is responsible for the transfer of part of the control on the net proton influx from the first, irreversible, step in the pathway (i.e. bacteriorhodopsin) to the second, reversible, step (i.e., charge-compensating ion movement).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号