首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Systemically administered beta-endorphin was tested in rats for its ability to modify the hypothermia and hypermotility induced by d-amphetamine. Colonic temperature and motor activity were measured in a cold (4°C) ambient temperature in animals given IP injections of beta-endorphin (0.1, 1.0, or 3.0 mg/kg), naloxone (10 mg/kg), or morphine (30 mg/kg). The same measurements were taken in animals given beta-endorphin (1.0 mg/kg) in combination with naloxone or saline pretreatment and d-amphetamine (15 mg/kg) or saline post-treatment. Morphine alone had a biphasic effect on thermoregulation, but did not affect d-amphetamine-induced hypothermia. Activity scores were decreased by morphine, in both d-amphetamine and saline treated animals. The thermal response of rats to beta-endorphin alone was variable, depending on dosage, but all 3 dosages partially blocked the hypothermic effect of d-amphetamine. Naloxone blocked the thermal effects of both beta-endorphin and d-amphetamine. Motor activity tended to be decreased by naloxone, regardless of amphetamine treatment, but beta-endorphin tended to increase activity in amphetamine-treated animals and reduce it in saline-treated controls. In their actions on both thermoregulation and activity, naloxone and beta-endorphin appeared to interact independently with d-amphetamine, often producing effects in the same direction, but in combination, they tended to be mutually inhibitory.  相似文献   

2.
Rats given d-amphetamine (15 mg/kg i.p.) or apomorphine (10 mg/kg i.p.) and placed in a cold environment (4°C) developed marked hypothermia. After daily injections of either drug for seven weeks, the maximal hypothermic responses to d-amphetamine or apomorphine were reduced to 72% and 19% of those obtained initially. Subsequent injection of ET-495, a central dopamine receptor stimulant, caused rectal temperature to decrease only 72% and 49% as much as in control animals. The hypothermic response to apomorphine was also depressed in d-amphetamine-treated animals. These observations suggest that the tolerance to the hypothermic effects of both d-amphetamine and apomorphine that develops is due at least in part to alterations in the sensitivity of dopamine receptors.  相似文献   

3.
Shlomo Yehuda  Abba J. Kastin   《Peptides》1980,1(3):243-248
Administration of several doses of MIF-I or alpha-MSH did not modify colonic temperature or the level of motor activity of rats in ambient temperatures of 4 degree or 20 degrees C. However, the thermoregulatory but not motor effects of the interaction between MIF-I or alpha-MSH with d-amphetamine were dependent upon ambient temperature. At 4 degree C, 1.0 mg/kg of both peptides enhanced the d-amphetamine-induced hypothermia, but at 20 degrees C both peptides blocked the hyperthermic effects of d-amphetamine. The hypothermic effect of chlorpromazine (CPZ) at 4 degree C and 20 degrees C was blocked by 1.0 mg/kg MIF-I but not by 1.0 mg/kg alpha-MSH. No linear dose response relationships between various doses of MIF-I or alpha-MSH and thermal responses were found. Administration of melanin or the use of hypophysectomized rats did not alter the significant interactions observed after peripheral injections.  相似文献   

4.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

5.
In this study we have examined the interactions of bombesin (1 microgram ICV), neurotensin (1 microgram ICV), TRH (10 micrograms ICV), somatostatin (10 micrograms ICV), PGE2 (10 micrograms ICV) and naloxone (10 mg/kg SC) on thermoregulation in the rat at room temperature (20 +/- 1 degree C). Given alone, bombesin, neurotensin, somatostatin and naloxone all produced hypothermia (bombesin greater than neurotensin greater than somatostatin congruent to naloxone). PGE2 was hyperthermic, and TRH had no effect. Bombesin and PGE2 neutralized one another's effects. Neurotensin had no effect on PGE2-induced hyperthermia. Naloxone enhanced the hypothermic effect of bombesin and somatostatin enhanced the rate of onset of hypothermia after bombesin. TRH had no effect on bombesin-induced hypothermia. TRH, somatostatin and naloxone had no effect on neurotensin-induced hypothermia. TRH antagonized the hypothermia due to naloxone and somatostatin.  相似文献   

6.
The effects of several analogs of thyroliberin (TRH), that have a chloro-acetyl substituent at the amino terminus, on locomotor depressant, locomotor stimulant, hyperthermic and hypothermic response to morphine were determined in the mouse. These compounds included N-(chloroacetyl)-L-phenylalanylpyrrolidine (ClAc-Phe-Pyrr), N-[m-(chloroacetyl)benzoyl]-L-phenylalanylpyrrolidine] (mClAcBz-Phe-Pyrr), N-[m-(chloroacetyl)benzoyl]-L-alanyl-L-phenylalanylpyrrolidine (mClAcBz-Ala-Phe-Pyrr), N-[p-(chloroacetyl)benzoyl]-L-alanyl-L-phenylalanyl-pyrrolidine (pClAcBz-Ala-Phe-Pyrr), N-(chloroacytyl)-L-alanyl-L-phenylalanyl-L-prolineamide(ClAc-Ala-Phe-Pro-NH2), N-[m-(chloroacetyl)-benzoyl]-L-phenylalanyl-L-prolineamide (mClAcBz-Phe-Pro-NH2), N-[p-(chloroacetyl)benzoyl]-L-phenylalanyl-L-prolineamide (pClAcBz-Phe-Pro-NH2). Since TRH is metabolized to cyclo (His-Pro) and the latter is shown to possess TRH like activity, an analog cyclo (Phe-Pro) was also used. Administration of morphine to mice at 10 mg/kg ip produced hyperthermia and depression in locomotor activity, while at 80 mg/kg ip, hypothermia and stimulation in locomotor activity were observed. Intracerebral injection of the following peptides (10 μg each per mouse) administered 10 min prior to morphine injection antagonized locomotor depression, hyperthermia, locomotor stimulation and hypothermia induced by an appropriate dose of morphine: mClAcBz-Phe-Pyrr, pClAcBz-Ala-Phe-Pyrr, ClAcAla-Phe-Pro-NH2, pClAcBz-Phe-Pro-NH2, cyclo (Phe-Pro) and TRH. The compounds which had no effect on low dose or high dose morphine induced responses included pGlu-Phe-Pyrr, mClAcBz-Ala-Phe-Pyrr, and mClAcBz-Phe-Pro-NH2. One compound, namely ClAc-Phe-Pyrr, antagonized morphine-induced locomotor stimulation and hypothermia but did not affect locomotor depression and hyperthermia produced by morphine. None of these peptides had any effect on the body temperature or the locomotor activity of normal mice. Many of the active compounds were previously shown to possess extremely weak or no activity in releasing thyrotropin from the pituitary. It is concluded that several of these analogs of TRH possess CNS activity in antagonizing morphine effects, and that a lack of relationship exists between the CNS and endocrine activity of these peptides.  相似文献   

7.
A Horita  M A Carino 《Life sciences》1978,23(16):1681-1686
Naloxone (5 mg/kg), but not naltrexone, shortened the duration of anaesthesia in rabbits pretreated with pentobarbital. This analeptic effect was blocked by atropine, but not by methylatropine; it thus appears that a central cholinergic mechanism is involved. In contrast, smaller doses of both naloxone and naltrexone attenuated the arousal property of thyrotropin releasing hormone (TRH). Naloxone, but not naltrexone, also antagonized the analeptic property of d-amphetamine. In conscious animals naloxone potentiated, whereas naltrexone attenuated, the excitatory effects of TRH and d-amphetamine.  相似文献   

8.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

9.
Serotonin is involved in many physiological processes, including the regulation of sleep and body temperature. Administration into rats of low doses (25, 50 mg/kg) of the 5-HT precursor l-5-hydroxytryptophan (5-HTP) at the beginning of the dark period of the 12:12-h light-dark cycle initially increases wakefulness. Higher doses (75, 100 mg/kg) increase nonrapid eye movement (NREM) sleep. The initial enhancement of wakefulness after low-dose 5-HTP administration may be a direct action of 5-HT in brain or due to 5-HT-induced activation of other arousal-promoting systems. One candidate arousal-promoting system is corticotropin-releasing hormone (CRH) and the hypothalamic-pituitary-adrenal axis. Serotonergic activation by 5-HTP at the beginning of the dark period also induces hypothermia. Because sleep and body temperature are influenced by circadian factors, one aim of this study was to determine responses to 5-HTP when administered at a different circadian time, the beginning of the light period. Results obtained show that all doses of 5-HTP (25-100 mg/kg) administered at light onset initially increase wakefulness; NREM sleep increases only after a long delay, during the subsequent dark period. Serotonergic activation by 5-HTP at light onset induces hypothermia, the time course of which is biphasic after higher doses (75, 100 mg/kg). Intracerebroventricular pretreatment with the CRH receptor antagonist alpha-helical CRH does not alter the impact of 5-HTP on sleep-wake behavior but potentiates the hypothermic response to 50 mg/kg 5-HTP. These data suggest that serotonergic activation by peripheral administration of 5-HTP may modulate sleep-wake behavior by mechanisms in addition to direct actions in brain and that circadian systems are important determinants of the impact of serotonergic activation on sleep and body temperature.  相似文献   

10.
The ability of thyrotrophin-releasing hormone (TRH), its metabolites and several analogues to induce wet-dog shaking (WDS) was tested by their injection into the periaqueductal grey region of male rats. TRH and its metabolite deamido-TRH (TRH-OH) both stimulated WDS, though TRH-OH gave a longer duration of response; other TRH metabolites were inactive. Of the TRH analogues studied, RX77368 (pGlu-His-3,3'-dimethyl-ProNH2) was the most potent in this behavioural test system. Both CG3509 and CG3703 were also very active in inducing WDS, as were their deamidated metabolites. The relative stability of the TRH analogues to enzymic degradation in the brain may be related to their enhanced behavioural activity over TRH. The production from these analogues of biologically-active metabolites may also explain the increased activity in stimulating WDS of the parent peptides.  相似文献   

11.
Kato S  Araki H  Kawauchi S  Takeuchi K 《Life sciences》2001,68(17):1951-1963
Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release  相似文献   

12.
Cytotoxicity resulting from the interaction of fluorescent light from a flow hood with Hepes-buffered cell culture medium at room temperature was demonstrated. Toxicity was prevented by keeping both cells (V79 Chinese hamster) and medium shielded from direct fluorescent light ("dark conditions") or by supplementing the medium with 10 micrograms/ml catalase; this suggests that extracellular hydrogen peroxide is a major cause of the lethal effect under "lighted conditions." No sensitization resulted from the exposure of cells in a sodium bicarbonate (SBC)-buffered medium to fluorescent light, nor in a catalase supplemented SBC-buffered medium. The Hepes/light reaction during routine cell manipulations presensitized cells to hypothermia damage in the dark with the presensitization being more severe for 5 than for 10 degrees C hypothermic exposure. Presensitization was prevented by performing the complete experiment under dark conditions or by supplementing the medium with 10 micrograms/ml catalase. However, catalase did not improve the hypothermic survival when experiments were performed under dark conditions. Hence, 10 micrograms/ml catalase does not protect cells from hypothermic (5 and 10 degrees C) damage per se, but rather from Hepes/light sublethal damage which interacts with hypothermic sublethal damage to result in lethal lesions. Additionally, under dark conditions, superoxide dismutase (SOD), allopurinol, catalase plus SOD, DMSO, or mannitol did not improve survival when present during hypothermic storage, suggesting that extracellular superoxide anion, hydrogen peroxide, or hydroxyl radicals are not the cause of cell killing under conditions of pure hypothermia uncomplicated by prehypothermic ischemia or hypoxia.  相似文献   

13.
The effects of β-endorphin, MIF-I, and α-MSH on d-amphetamine- and CPZ-induced hypothermias in rats kept at 4°C were tested in three experimental groups: (a) intact; (b) rats with lesions of the olfactory tubercle; and (c) rats in which the link between the DA mesolimbic pathway and the striatum was disconnected. All drugs tested alone (except MIF-I) caused significant hypothermia. Pretreatment with CPZ, MIF-I, and α-MSH potentiated d-amphetamine-induced hypothermia in intact rats. Pretreatment with α-MSH potentiated CPZ-induced hypothermia. β-Endorphin partially blocked d-amphetamine-induced hypothermia, but did not interact with CPZ, MIF-I, or α-MSH. All potentiations were either reduced or disappeared in the incisioned rats. CPZ and α-MSH caused hypothermia in olfactory tubercle-lesioned rats. The results indicate that: (a) the DA mesolimbic pathway is involved in the hypothermic response of all drugs tested; (b) an intact feedback loop is required for the potentiation of the hypothermic response of CPZ on d-amphetamine, MIF-I on d-amphetamine, and α-MSH on d-amphetamine and CPZ; (c) β-endorphin acts as a partial blocker of d-amphetamine; MIF-I is a weak potentiator of d-amphetamine. α-MSH acts as a negative modulator of the DA system, most probably in the striatum.  相似文献   

14.
Endogenous opiates are believed to subserve various behaviors and physiological functions. We have examined the effect of U50488H (0-12 mg/kg), a kappa agonist, and WIN 44441-3 (0-4.0 mg/kg), a kappa antagonist, on ethanol (ET)-induced changes in rectal temperature and in plasma corticosterone (CS) levels in rats. The 12 mg/kg dose of U50488H produced marked hypothermia, the other doses either produced hyperthermia comparable to that seen in control animals, or had no effect. The 0.5 mg/kg of WIN44441-3 had a small hypothermic effect while the 4.0 mg/kg produced hyperthermia. U50488H potentiated and the low dose of WIN 44441-3 reversed the hypothermic effect of ethanol. By contrast, neither WIN 44441-3 nor U50488H pretreatments affected the ethanol-induced elevation in plasma CS. These results indicate that kappa agonists increase plasma CS concentration and affect thermoregulatory mechanisms. Furthermore, our data indicate a possible role of endogenous kappa opioids in the hypothermic effect of ethanol, but not in the elevation of plasma CS.  相似文献   

15.
Intravenous injection of SC-19220 (3-9 mg/kg) caused dose-related hypothermic responses in cats. Repeated administration of SC-19220 resulted in tolerance to its hypothermic action. During SC-19220-induced hypothermia, the hyperthermic activity of both prostaglandin E-1 and leukocytic pyrogen was reduced or abolished. Neither prostaglandin E-1 nor leukocytic pyrogen was antagonized when given shortly after recovery from SC-19220-induced hypothermia or by doses of SC-19220 which did not cause hypothermia. Although these results may indicate a role of prostaglandins in normal physiological thermoregulation, it is also possible that production of hypothermia by SC-19220 is unrelated to prostaglandin antagonism.  相似文献   

16.
Administration of insulin 1 i.u./100 g of body weight to hypothermic rats causes a fall of glucose and lactate levels in the serum and a rise in myocardial glycogen level in relation to the group of control rats kept at room temperature and to the group of rats subjected only to hypothermia. Beta-adrenergic blockade (propranolol 0.6-1 mg/kg) caused no changes in the levels of carbohydrate metabolites in the serum of hypothermic rats but raised the myocardial glycogen level by 42% in relation to the animals subjected only to hypothermia. Simultaneous administration of both these agents during hypothermia produces a fall of the serum levels of glucose and pyruvate with a rise in the level of lactate, and raises the glycogen level in the myocardium (by about 161%) and in the skeletal muscle (by 54%) in relation to the rats subjected to hypothermia alone. Insulin and/or propranolol fail to prevent glycogen reserve exhaustion in the liver of hypothermic rats which could be due to activation of non-blocked alpha-adrenergic receptors or to the action of yet another glycogenolytic agent, e.g. glucagon, during hypothermia.  相似文献   

17.
[3H](3-Me-His2) thyrotropin-releasing hormone ([3H]MeTRH) bound to TRH receptors in rodent, rabbit and dog brain and spinal cord (SC), and in rat, sheep, bovine and dog anterior pituitary (PIT) glands, with high affinity (dissociation constants, Kds=5–9 nM; n=3–4) but to different densities of these sites (B max range 6–145 fmol/mg protein) (rabbit SC>sheep PITG.pig brain>dog brain>rat brain>bovine and dog PIT). Various TRH analogs competitively inhibited [3H]MeTRH binding in these tissues with a similar rank order of potency: MeTRH>TRH> CG3703RX77368MK-771>TRH Glycinamide>Glu1-TRHCG3509NVal2-TRH>>>TRH free acid>>>and cyclo-His-Pro, indicating a pharmacological similarity of CNS and pituitary TRH receptors. While most TRH analogs displaced [3H]MeTRH binding with a similar potency in the different species, TRH exhibited a 2-fold lower affinity in the rat and G.pig brain than in other tissues of other species. Similarly, CG3703 was 2.4–4.5 times more active in the rabbit brain than in the rodent and dog brain, and also more potent in the rabbit brain as compared to the sheep PIT. However, MK-771 and RX77368 had a similar affinity for the brain TRH receptors in the different species but RX77368 was 2-fold more active in the SC preparations and 3–4-fold less active in the sheep PIT when compared to the brain homogenates. RX 77368 exhibited the highest affinity for the dog PIT TRH receptor. In contrast, MK-771 showed a similar affinity for the brain, SC and PIT TRH receptor apart from in the rat PIT where it had the highest affinity. Similarly, TRH glycinamide was more active in the dog brain than rodent and rabbit brain. These data suggest that while the rank order of potency of TRH analogs is similar in the species examined, certain analogs appear to be more potent in certain tissues of some species than in others. In addition, the current results have shown that CG3703 is almost equipotent with RX77368 and MK-771 in most species but is substantially more active than its related analog, CG3509 in the brain, SC and PIT. Taken together, these observations may have some relevance to the future clinical applications of these metabolically stabilized TRH analogs.  相似文献   

18.
The development of tolerance to ethanol-induced hypothermia and hypnosis, and cross-tolerance with morphine was studied in mice and rats. Ethanol significantly decreased the body temperature in rats (3.0 and 3.2 g/kg) and in mice (3.5 and 4.0 g/kg). Chronic administration of ethanol resulted in the tolerance not only to ethanol hypothermia but also to hypothermic effects of morphine in examined animals. Implantation of morphine pellets caused the development of cross tolerance to ethanol-induced hypothermia in rats but not in mice. The hypnotic effect of ethanol was significantly shorter in chronic alcoholized rats but not in morphine-implanted rats. Neither chronic ethanol administration nor implantation of morphine pellets changed the duration of ethanol-induced hypnosis in mice. These results seem to support the hypothesis on the opiate-like mechanism of ethanol action.  相似文献   

19.
R Eikelboom 《Life sciences》1987,40(11):1027-1032
The temperature effects of naloxone and naltrexone (1-30 mg/kg) were examined in well habituated male rats. These drugs had a similar time course and potency, producing a dose-dependent hypothermia followed several hours later by a hyperthermia. A subsequent study found that not only did 30 mg/kg of naloxone or naltrexone produce an equivalent hypothermia but this hypothermia was just as pronounced during the dark as in the light part of the cycle.  相似文献   

20.
Intravenous injection of SC-19220 (3–9 mg/kg) caused dose-related hypothermic responses in cats. Repeated administration of SC-19220 resulted in tolerance to its hypothermic action. During SC-19220-induced hypothermia, the hyperthermic activity of both prostaglandin E1 and leukocytic pyrogen was reduced or abolished. Neither prostaglandin E1 nor leukocytic pyrogen was antagonized when given shortly after recovery from SC-19220-induced hypothermia or by doses of SC-19220 which did not cause hypothermia. Although these results may indicate a role of prostaglandins in normal physiological thermoregulation, it is also possible that production of hypothermia by SC-19220 is unrelated to prostaglandin antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号