首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small animals that jump or perform predatory strikes depend on much higher limb accelerations than larger animals. To overcome the temporal restrictions of muscle contraction, some arthropod muscles slowly load spring-like structures with potential energy. In flight, sound generation, jumping, or predatory strikes arthropods employ different strategies to transform muscular action to the desired movement. Click mechanisms control the frequency of oscillating spring — muscle systems while other accessory structures such as snap mechanism or latches with trigger mucles determined the stability and control the timing of the instantaneous discharge in catapult mechanisms.  相似文献   

2.
It was shown by means of a mathematical model of a myelinated nerve fiber (Frankenhaeuser — Huxley) that an increase in threshold and decrease in the amplitude of the action potential (AP) during the relative refractory period are due mainly to sodium inactivation. The contribution of increased potassium permeability to these changes is small, for the chief component of the outgoing ionic current in the node of Ranvier is not the potassium current, but the leak current. Given the ratio between these currents the increase in threshold and graduation of the action potential in the node membrane are less marked than in the membrane of the squid giant axon. At the beginning of the relative refractory period the AP evoked by strong stimulation is conducted only to the next node. Later in the refractory period impulses are conducted incrementally, and the threshold for the spreading impulse is higher than the threshold for spike excitation in the stimulated node. Delay in impulse conduction between refractory nodes leads to the formation of a retrograde depolarization wave. The reasons for differences in the mechanisms of impulse conduction along unmyelinated and myelinated refractory fibers are discussed.Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 201–207, March–April, 1972.  相似文献   

3.
Repetitive firing of single tonic neurones is modeled to include in detail both membrane excitation kinetics and electrotonic effects due to membrane non-uniformities in the impulse encoder region. The model is evaluated dynamically and compared with similar data obtained from the crayfish stretch receptor neuron. Two dynamic techniques utilizing small amplitude sinusoidal signals are employed. One technique is used to fix the values of two parameters which relate to the electrotonic control of membrane potential in the interspike interval and to the relaxation time of the K-conductance during repetitive firing. The other technique is employed as a consistency check. The dynamics are particularly sensitive to the K-channel relaxation time in the interspike interval.Research supported by NSF grant BNS 77-22532 and Public Health Service Grant EY 00293. Computer facilities were made available by a grant from the Air Force Office of Scientific Research (AFOSR-1221) and by the University of Minnesota Computer Center  相似文献   

4.
To ascertain the properties of an excitable membrane of the soma of giant neurons of mollusks, experiments were carried out to study the effect of conditioning shift of the membrane potential on the mechanism of action-potential generation. The effect of conditioning was assessed from changes in the action-potential curve and its first derivative, as well as from the curve of transmembrane currents under voltage clamp conditions. It was found that a change in membrane potential evokes at least two reactions which have opposite effects on the mechanism of generation of action potentials. These reactions evidently have different time characteristics. One of these does not differ notably from the reaction recorded for other excitable structures, and is manifested in the activation (with hyperpolarization) or inactivation (with depolarization) of the mechanism generating action potentials. The other reaction contributes either to an increase (with depolarization) or a decrease (with hyperpolarization) in the efficiency of this mechanism. Conditioning polarization also has a marked effect on the system responsible for repolarization of the membrane during generation of action potentials. This effect is manifested in a change in the reaction of this system to tetraethylammonium ions. The specific membrane systems sustaining excitability and reacting to changes in the strength of the membrane's electrical field were found to be very inert. After a shift in the potential to a given stable level a rearrangement, lasting sometimes tens of seconds, takes place in the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 91–99, January–February, 1970.  相似文献   

5.
Animal locomotion results from muscle contraction and relaxation cycles that are generated within the central nervous system and then are relayed to the periphery by motoneurons. Thus, motoneuron function is an essential element for understanding control of animal locomotion. This paper presents motoneuron input–output relationships, including impulse adaptation, in the medicinal leech. We found that although frequency-current graphs generated by passing 1-s current pulses in neuron somata were non-linear, peak and steady-state graphs of frequency against membrane potential were linear, with slopes of 5.2 and 2.9 Hz/mV, respectively. Systems analysis of impulse frequency adaptation revealed a static threshold nonlinearity at −43 mV (impulse threshold) and a single time constant (τ = 88 ms). This simple model accurately predicts motoneuron impulse frequency when tested by intracellular injection of sinusoidal current. We investigated electrical coupling within motoneurons by modeling these as three-compartment structures. This model, combined with the membrane potential–impulse frequency relationship, accurately predicted motoneuron impulse frequency from intracellular records of soma potentials obtained during fictive swimming. A corollary result was that the product of soma-to-neurite and neurite-to-soma coupling coefficients in leech motoneurons is large, 0.85, implying that the soma and neurite are electrically compact.  相似文献   

6.
The nature of subthreshold changes in excitable plasma membranes has been investigated in stem parenchyma cells of Cucurbita pepo L. during action-potential generation induced by gradual cooling (from 23 to 10 ° C). The character of the subthreshold depolarization of excitable cells is shown to be mainly defined by a decrease in the activity of the plasma-membrane electrogenie pump (H+-ATPase). In its turn, the pump activity is controlled by thermal changes in the structure of the membrane lipid matrix. Based on the results obtained, a sequence of subthreshold changes has been suggested in which thermally induced structural rearrangements of membrane lipids play the role of trigger.Abbreviations AP action potential - DCCD N,N-dicyclohexil-carbodiimide - Em membrane potential - Ie/Im ratio of pyrene excimer/monomer fluorescence intensities  相似文献   

7.
There is now good evidence that most of the lipids in a biological membrane are arranged in the form of a bilayer. Charged lipids in the membrane of an excitable cell are subject to a significant driving force, the gradient of the intramembrane potential, which will tend to redistribute the lipids between the two halves of the bilayer by a “phospholipid flip-flop” mechanism. We have calculated, by combining the Boltzmann relation from statistics and the Gouy equation from the theory of the diffuse double layer, the steady-state distribution of charged lipids in the bilayer. This distribution is completely determined, within the framework of the model, by three experimentally accessible variables; the percentage of charged lipid in the bilayer as a whole, the resting potential and the ionic strength. The known values for the percentage of anionic phospholipids in squid axons (10-15%), the membrane potential (50-100 mV) and ionic strength (0.5 M) imply that the charge density and double layer potential at the outer surface of the nerve will be substantially greater than the charge density and double layer potential at the inner surface, in agreement with the best available evidence from physiological measurements.  相似文献   

8.
Ionic mechanisms of EPSP generation and depolarization induced by iontophoretic application of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5-HT) — acetylcholine and serotonin potentials — were investigated in neurons of the isolated rabbit superior cervical ganglion by means of intracellular microelectrodes. The reversal potentials (Er) for EPSP and the ACh-potential were –14.4±1.6 and –16.5±1.2 mV respectively, and they were about the same for the 5-HT potential. In some neurons (about one-third) much more negative values for Er were obtained for EPSP and the ACh-potential by extrapolation, probably due to an increase in the resistance of their membrane during hyperpolarization. A decrease in the external sodium and potassium concentrations was shown to make Er for EPSP and the ACh-potential more negative, whereas an increase in the external potassium concentration made it more positive than in normal solution; a change in the external chloride concentration did not alter Er. It is suggested that the excitatory transmitter and exogenous ACh (and also, probably, 5-HT) share the same ionic mechanism of action of the membrane, which includes an increase in the permeability of the membrane to two ions — sodium and potassium — simultaneously.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 637–644, November–December, 1978.  相似文献   

9.
The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C). However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels) or their temperature-dependent behaviour. By following Einstein’s approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS). Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest) pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.  相似文献   

10.
Olfactory receptors code the concentration of stimulating molecules into an impulse frequency message. Patch-clamp recordings have now demonstrated, in the olfactory receptor cell membrane, a number of membrane conductances. Some of them are gated by odorants, in the cilia, and depolarize the cell through cAMP- or IP3-sensitive channels, depending on the species. Other conductances are activated by membrane depolarization and/or an increased intracellular Ca2+ concentration; they participate in oscillating membrane potential changes during impulses and post-spike after-polarizations, and control the repetitive firing. Original data relative to the resting potential and the impulse frequency coding of the odorant concentration are presented.  相似文献   

11.
Biological pacemaker created by fetal cardiomyocyte transplantation   总被引:7,自引:0,他引:7  
Summary Background—The aim of this study was to investigate the feasibility of an alternative approach to electronic pacemaker by using spontaneously excitable cell grafts as a biological pacemaker in a large animal model of complete atrioventricular block. Methods and Results—Dissociated male human atrial cardiomyocytes including sinus nodal cells were grafted into the free wall of the left ventricle in five female pigs. Three weeks after the injection of cell-grafted solution/control medium the pigs underwent catheter ablation of the atrioventricular node (AV-node). After complete AV block was created, the idioventricular beat rate was more rapid in cell-grafted pigs than that in control pigs (86±21 vs. 30±10 bpm; P<0.001). Administering of isoprenalin significantly increased idioventricular rate from 86±21 to 117±18 bpm in the cell-grafted animals (P<0.01). Electrophysiological mapping studies demonstrated that the idioventricular rhythm originated from the cell-injection site. Polymerase chain reaction verifying the existence of SRY DNA in the cell injection site indicated that the grafted male cells were survived. Furthermore, the connexin-43 and N-cadherin positive junctions between donor cardiomyocytes and host cells were identified. Conclusion—Xenografted fetal human atrial cardiomyocytes are able to survive and integrate into the host myocardium, and show a pacing function that can be modulated by autonomic agents.This work was supported by grants from Natural Science Foundation of China, Scientific Research Foundation of Hubei Province, Scientific and Technological Program of Wuhan City.  相似文献   

12.
Parabolic bursting revisited   总被引:4,自引:0,他引:4  
 Many excitable membrane systems display bursting oscillations, in which the membrane potential switches periodically between an active phase of rapid spiking and a silent phase of slow, quasi steady-state behavior. A burster is called parabolic when the spike frequency is lower both at the beginning and end of the active phase. We show that classes of voltage-gated conductance equations can be reduced to the mathematical mechanism previously analyzed by Ermentrout and Kopell in [7]. The reduction uses a series of coordinate changes and shows that the mechanism in [7] applies more generally than previously believed. The key hypothesis for the more general theory is that a certain slow periodic orbit must stay close to a curve of degenerate homoclinic points for the fast system, at least during the active phase. We do not require that the slow system have a periodic orbit when the voltage is held constant. Received 28 March 1995; received in revised form 20 October 1995  相似文献   

13.
The motor unit (MU) potentials of the human m. rectus femoris were recorded during voluntary isometric contraction by means of a bipolar needle electrode. The frequency of impulse discharge of individual motoneurons was defined as a quantity inverse to the average interval between impulses during 0.5 or 1.0 sec. The force of contraction varied from 0 to 4–14 kg (17–47% of the maximum). The investigations showed that in addition to switching on and off of motoneurons during a change of contraction force, the frequency of their impulse discharges also changes. Motoneurons recruited at a low force (low-threshold) reached the highest frequency (up to 18–21 impulses/sec). As a rule, the higher the threshold, the lower the frequency in the entire range of changes. In the case of prolonged contraction with a constant force the frequency of discharges dropped during the first 1–2 min. The established frequency level did not exceed 10–13 impulses/sec. A voluntary increase of contraction force at this period was related with a new increase of frequency. Recruitment of new motoneurons was observed during prolonged contraction. The data obtained show that the mechanism of change of the firing frequency of motoneurons actively participates in contraction gradation, mainly its dynamic component. It is regarded as a mechanism of smooth and precise control. The decrease of frequency during prolonged contraction is apparently due to adaptation, although the participation of inhibition is not precluded.Institute of Problems of Information Transmission, Academy of Sciences of the USSR. Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 2, pp. 200–209, March–April, 1971.  相似文献   

14.
The stunning sensations produced by electric fish, particularly the electric eel, Electrophorus electricus, have fascinated scientists for centuries. Within the last 50 years, however, electric cells of Electrophorus have provided a unique model system that is both specialized and appropriate for the study of excitable cell membrane electrophysiology and biochemistry. Electric tissue generates whole animal electrical discharges by means of membrane potentials that are remarkably similar to those of mammalian neurons, myocytes and secretory cells. Electrocytes express ion channels, ATPases and signal transduction proteins common to these other excitable cells. Action potentials of electrocytes represent the specialized end function of electric tissue whereas other excitable cells use membrane potential changes to trigger sophisticated cellular processes, such as myofilament cross-bridging for contraction, or exocytosis for secretion. Because electric tissue lacks these functions and the proteins associated with them, it provides a highly specialized membrane model system. This review examines the basic mechanisms involved in the generation of the electrical discharge of the electric eel and the membrane proteins involved. The valuable contributions that electric tissue continues to make toward the understanding of excitable cell physiology and biochemistry are summarized, particularly those studies using electrocytes as a model system for the study of the regulation of membrane excitability by second messengers and signal transduction pathways.  相似文献   

15.
We describe the — unexpected — occurrence of stable limit cycles in the two locus, two allele model. No frequency dependence is involved. The cycles are due to the interaction between recombination and natural selection.This work received support from the National Science Foundation and the Research Foundation of the City University of New York  相似文献   

16.
Membrane Potentials in Excitable Cells of Aldrovanda vesiculosa Trap-Lobes   总被引:1,自引:0,他引:1  
The resting membrane potential in excitable cells of Aldrovandatrap-lobes is composed of diffusion and electrogenic potentials.The diffusion potential, about –100 mV in artificial pondwater, was determined from the external K+ and Na+ concentrations.The permeability ratio, PNa/PK of the membrane was estimatedto be about 0.3. The electrogenic potential hyperpolarized themembrane to about –140 mV. The peak value of the actionpotential increased by +26 mV with a tenfold increase in theexternal Ca2+ concentration. The action potential was blockedby an application of the Ca2+ chelater or the Ca channel blocker,LaCl3. Cells showed additional Ca2+ influx (7.8 pmole/cm2 impulse)during membrane excitation. These facts suggest that the transientincrease in Ca2+ influx causes the action potential presentin cells of Aldrovanda trap-lobes. 1 Present address: Jerry Lewis Neuromuscular Research Center,School of Medicine, University of California Los Angeles, LosAngeles, CA90024, U.S.A. 2 Present address: Biological Laboratory, Kyoritsu Women's University,Hachioji 193, Japan. (Received September 21, 1983; Accepted September 7, 1984)  相似文献   

17.
The mechanism of the process leading to cell-cell fusion induced by enveloped viruses at a mildly acidic pH is as yet unknown. In this report we demonstrate that the fusion events induced by three viruses of different families, namely Semliki Forest (togavirus), vesicular stomatitis (rhabdovirus) and influenza (orthomyxovirus), share common features. In all three systems a sudden drop of the intracellular pH—below the critical eextracellular pH required to trigger fusion from within (FFWI)—is observed. This influx of protons is specific and not due to a general leakiness of the plasma membrane, and therefore might be caused by the opening of a proton channel.  相似文献   

18.
19.
Depolarization-activated and hyperpolarization-activated ion conductances in the membrane of a marine dinoflagellateNoctiluca miliaris were examined under voltage-clamp conditions.Noctiluca exhibited a transient inward current in response to a step depolarization from a holding potential level of –80 mV to a potential level more positive than –50 mV. The I–V relationship for the current exhibited typical N-shaped characteristics similar to those of most excitable membranes. The current was inactivated by a membrane depolarization. The reversal potential of the current shifted in hyperpolarizing direction when the external Na+ concentration was lowered. The transient inward current is assumed to be responsible for the Na+-dependent positive spike in non-clamped specimens ofNoctiluca.Noctiluca exhibited a transient outward current in response to a step hyperpolarization from a holding potential level of –20 mV to a potential level more negative than –30 mV. The I–V relationship for the current was a typical N-shape as if it was turned 180° around its origin. The outward current showed a two-step exponential time-decay. The outward current was inactivated by a membrane hyperpolarization. The reversal potential shifted in the depolarizing direction when the external Cl concentration was lowered. The transient outward current is responsible for the Cl-dependent negative spike in non-clamped specimens ofNoctiluca.Abbreviations ASW artificial seawater - TRP tentacle regulating potentials - TTX tetrodotoxin  相似文献   

20.
Afferent activity in thin myelinated and unmyelinated cutaneous nerve fibers was analyzed by an impulse collision method and by methods improving the signal-to-noise ratio in the record of the antidromic action potential. The following groups were distinguished among the thin myelinated and unmyelinated nerve fibers on the basis of the results of investigation of conduction velocities, thresholds of electrical excitation, and response to mechanical stimulation: A 1 (conduction velocity 30-14 m/sec) — a relatively larger number of these fibers conducts excitation in response to weak mechanical stimulation; A 2 (14–4.0 m/sec) — the receptors of these fibers are more easily excited by a strong stimulus; a group of "mixed" fibers, containing myelinated and unmyelinated nerve fibers (4–2 m/sec), conducting excitation in response to both types of mechanical stimulation; C1 (2.0–1.0 m/sec) — a fairly large number of these unmyelinated fibers conducts impulses in response to weak mechanical stimulation; C2 (1.0–0.15 m/sec) the majority of fibers of this group is connected with receptors requiring strong mechanical stimulation for their excitation.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 67–75, January–February, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号