首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have implicated the hydrolysis of phosphoinositides and phosphatidylcholine in agonist-stimulated events. The potent mitogen, alpha-thrombin, stimulates the generation of diglycerides in a biphasic and sustained manner in IIC9 fibroblasts (Wright, T. M., Rangan, L. A., Shin, H. S., and Raben, D. M. (1988) J. Biol. Chem. 263, 9374-9380). Using measurements of radiolabeled headgroup release and molecular species analysis, we previously determined that alpha-thrombin generates diglycerides through the hydrolysis of both the phosphoinositides and phosphatidylcholine at early times (15 s), and at later times (greater than or equal to 5 min) through the hydrolysis of primarily, if not exclusively, phosphatidylcholine (Pessin, M. S., and Raben, D. M. (1989) J. Biol. Chem. 264, 8729-8738). In contrast, IIC9 fibroblasts respond to the mitogenic treatments of (a) alpha-thrombin following chymotrypsin pretreatment or (b) epidermal growth factor by increasing their levels of diglycerides in a monophasic and sustained manner (Wright, T. M., Rangan, L. A., Shin, H. S., and Raben, D. M. (1988) J. Biol. Chem. 263, 9374-9380). In this report, we have analyzed the molecular species of the diglycerides generated by these two different treatments and have also examined the lipid response of IIC9 fibroblasts to platelet-derived growth factor. Based on both the molecular species analyses and the release of radiolabeled head-groups, all three of these different mitogenic treatments generate diglycerides primarily through the stimulation of phosphatidylcholine hydrolysis. However, while similar, the molecular species profiles of the diglycerides generated by these three treatments are not identical to the molecular species profile of total cellular phosphatidylcholine. In addition, the molecular species profiles of the diglycerides generated by these three mitogenic treatments greatly resemble each other, with significant differences between any two profiles occurring in at most one molecular species. This finding differs from that seen with alpha-thrombin stimulation alone, where the molecular species profile of the diglycerides generated following 5 min of alpha-thrombin stimulation is nearly identical to the molecular species profile of total cellular phosphatidylcholine. These data support the possibility of hormone-sensitive phosphatidylcholine pools or selective diglyceride metabolism.  相似文献   

2.
Diglycerides derived from the phospholipase C-mediated hydrolysis of phosphoinositides are implicated as important mediators of agonist-induced responses, including the stimulation of cell division. alpha-Thrombin-stimulated proliferation of fibroblasts is associated with a sustained increase in cellular diglycerides, while the hydrolysis of phosphoinositides is transient (Wright, T. M., Rangan, L. A., Shin, H. S., and Raben, D. M. (1988) J. Biol. Chem. 263, 9374-9380). A rigorous assessment of this apparent discrepancy requires an analysis of the molecular species of the lipids involved. In this report, we have analyzed the molecular species of 1,2-diglycerides present in quiescent and alpha-thrombin-stimulated IIC9 Chinese hamster embryo fibroblasts. The molecular species profiles of the stimulated diglycerides were compared to the profiles of molecular species contained in cellular phospholipids. We demonstrate that 1) stimulation of IIC9 cells by alpha-thrombin results in an increase in the levels of diglyceride molecular species already present in control, quiescent cultures, without the addition of new species or the complete loss of existing species; 2) the diglycerides present in control cultures as well as in cultures stimulated with alpha-thrombin are all ester-linked; and 3) while the phosphoinositides contribute a significant proportion of the diglycerides generated 15 s following alpha-thrombin addition, phosphatidylcholine contributes most of the diglycerides generated after 5 min and 1 h.  相似文献   

3.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.  相似文献   

4.
Both acidic and basic fibroblast growth factor (FGF), although devoid alone of growth-promoting ability on resting or activated human lymphoid B cells, were found to markedly increase the proliferative response of anti-mu-chain or SAC preactivated B cell blasts to the low molecular weight B cell growth factor (LMW-BCGF) and to enhance the costimulatory response of resting B cells to anti-mu-chain and LMW-BCGF. This potentiating effect was also observed for a LMW-BCGF-dependent B cell tumor derived from a lymphocytic nodular lymphoma. Other growth factors acting on fibroblasts, such as epidermal growth factor, alpha-thrombin, platelet-derived growth factor, and insulin-like growth factor-I did not display such enhancing effect on LMW-BCGF-driven proliferation. Activated, but not resting B cells were found to bear receptor sites for FGFs and from kinetics experiments, it is suggested that LMW-BCGF induces competence expression for FGFs in those cells. Moreover, the LMW-BCGF-elicited generation of inositoltrisphosphate resulting from polyphosphoinositides hydrolysis was increased in the presence of FGF.  相似文献   

5.
A property common to many growth factors is that they must be present for several hours before the commitment to DNA synthesis and cell division occurs. The intracellular signals that are relevant during this period are poorly defined. We examined the formation of 1,2-diacylglycerol in IIC9 fibroblasts after stimulation with epidermal growth factor (EGF), and found that the mass of this lipid remained elevated for at least four hours. The concentration-dependence of EGF-stimulated 1,2-diacylglycerol production and [3H]thymidine incorporation were similar. Studies of phospholipid metabolism strongly suggested that phosphatidylcholine was the source of the 1,2-diacylglycerol generated in response to EGF. EGF did not stimulate the hydrolysis of other phospholipids, including the phosphoinositides, nor did it increase synthesis de novo of 1,2-diacylglycerol. This pattern of sustained 1,2-diacylglycerol formation from phosphatidylcholine may be important in the mitogenic signalling of EGF and potentially other growth factors.  相似文献   

6.
We studied mitogenic signal transduction in normal and oncogene-transformed 32D cells, a murine hematopoietic cell line that is normally dependent on interleukin-3 (IL3) for proliferation and survival. The formation of second messengers was measured in normal cells stimulated with IL3, and in cells transfected with foreign growth factor receptor genes and stimulated with appropriate growth factors. We also measured the steady-state level of second messengers in 32D cells transformed by erbB, abl, and src oncogenes which abrogate growth factor requirement. We found that IL3 stimulated the formation of diacylglycerol independently of inositol lipid turnover, but concomitantly with increased turnover of phosphatidylcholine. Epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) stimulated the 'classical' turnover of inositol lipids with formation of diacylglycerol and calcium-mobilizing inositol phosphates. Colony stimulating factor-1 triggered inositol lipid turnover, although to a much lower extent than EGF and PDGF. Transformed cells showed elevated levels of diacylglycerol together with increased turnover of phosphoinositides and phosphatidylcholine. Taken together these results indicate that different growth factors and oncoproteins associate with multiple signalling pathways in 32D cells.  相似文献   

7.
The mechanism by which an agonist, binding to a cell surface receptor, exerts an effect on events in the nucleus is not known. We have previously shown (Leach, K. L., Ruff, V. A., Wright, T. M., Pessin, M. S., and Raben, D. M. (1991) J. Biol. Chem. 266, 3215-3221) that alpha-thrombin treatment of IIC9 cells results in increased levels of cellular 1,2-diacylglycerol (DAG) and activation of protein kinase C (PKC). Here, we have examined whether changes in nuclear PKC and nuclear DAG also are induced following alpha-thrombin treatment. IIC9 cells were treated with 500 ng/ml alpha-thrombin, and nuclei were then isolated. Western blot analysis using isozyme-specific antibodies demonstrated the presence of PKC alpha, but not PKC epsilon or zeta in the nuclei of cells treated with either phorbol 12-myristate 13-acetate or alpha-thrombin. The increase in nuclear PKC alpha levels was accompanied by a 10-fold increase in nuclear PKC specific activity and stimulated phosphorylation of at least six nuclear proteins. The rise in nuclear PKC levels occurred rapidly and reached a maximum at 30-60 s, which was followed by a decline back to the control level over the next 15 min. In addition, alpha-thrombin treatment resulted in an immediate rise in DAG mass levels in the nuclear fractions. Kinetic analysis indicated that a maximum increase in DAG levels occurred 2.5-5 min after the addition of alpha-thrombin and remained elevated for at least 30 min. In cells labeled with [3H]myristic acid, alpha-thrombin treatment induced an increase in radiolabeled nuclear diglycerides, suggesting that the stimulated nuclear DAGs are derived, at least in part, from phosphatidylcholine. Our results suggest that increases in both nuclear DAG levels and PKC activity following alpha-thrombin treatment may play a role in mediating thrombin-induced nuclear responses such as changes in gene expression and cellular proliferation.  相似文献   

8.
We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation.  相似文献   

9.
The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase.  相似文献   

10.
We have shown previously that phosphatidic acid esterified to polyunsaturated fatty acids is mitogenic for primary cultures of mouse mammary epithelial cells embedded within collagen gels. We hypothesized that this mitogenic competence resulted from the ability of this phospholipid to activate multiple signal transduction pathways in mammary epithelium. A closer examination of this hypothesis was undertaken by examining the effect of exogenous phosphatidic acid on phosphoinositide (PI) hydrolysis and its intracellular metabolism to diglyceride, an activator of protein kinase C. For assays of phosphoinositide-specific phospholipase C activation, mammary epithelial cells from virgin Balb/c mice were isolated by collagenase dissociation of mammary glands and cultured on the surface of Type I collagen-coated culture dishes. Phosphatidic acid (PA) stimulated a sustained increase in inositol phosphates and caused inositol phospholipid depletion when added to cells in which inositol phospholipids were prelabeled with 3H-myoinositol. This effect was specific for PA among phospholipids tested. Neither lineoleic acid, that can be released from PA, nor prostaglandin E2 affected PI hydrolysis. When mammary epithelial cells were cultured inside collagen gels in the presence of exogenous PA or phosphatidylcholine (PC) radiolabeled with 3H-glycerol, PA was found to persist intracellularly and be dephosphorylated to diglyceride (an activator of protein kinase C) to a greater extent than PC, a nonmitogenic phospholipid. In contrast to PA, epidermal growth factor (EGF) only slightly stimulated PI hydrolysis, showing that these two different growth-promoting factors do not actively couple to the same signal transduction pathways in mammary epithelial cells. These results show that PA may activate multiple pathways in mammary epithelial cells either directly or via its metabolism to diglyceride. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Diacylglycerols (DAGs) derived from phosphatidylcholine (PC) hydrolysis have been shown to activate protein kinase C (PKC) in vitro, but it is not known whether this event occurs in response to DAGs generated via agonist-induced PC hydrolysis in intact cells. In this report we have addressed this question directly, using alpha-thrombin stimulation of IIC9 fibroblasts. PKC activation in intact cells was assessed in two ways, by measuring: 1) PKC membrane association as determined by kinase activity and Western blot analysis and 2) the phosphorylation of an endogenous PKC substrate, an 80-kDa protein. Treatment with 500 ng/ml alpha-thrombin has been shown to stimulate both phosphoinositide and PC hydrolysis, whereas treatment with 100 pg/ml alpha-thrombin stimulates only PC breakdown. Using these two conditions, we show that DAG produced from phosphoinositide, but not PC hydrolysis, is associated with the activation of PKC.  相似文献   

12.
1. Saline extract of sheep pancreas acetone-dried powder was shown to catalyse acyl ester hydrolysis of spinach leaf galactosyl diglycerides and also galactosylglucosyl diglyceride of Lactobacillus casei. 2. Sodium deoxycholate stimulated the enzyme activity. Ca(2+) had no effect on the hydrolysis of monogalactosyl diglyceride, but it enhanced that of digalactosyl diglyceride. When added together, there was considerably less activity with both the substrates. 3. Optimal hydrolysis was observed at pH7.2. 4. The initial point of hydrolysis was at position-1, leading to the formation of monogalactosyl monoglyceride and digalactosyl monoglyceride. Further hydrolysis to the corresponding galactosylglycerols and later to galactose and glycerol was also observed, indicating the presence of alpha- and beta-galactosidases in the enzyme preparation. 5. Formation of monogalactosyl diglyceride from digalactosyl diglyceride by the action of alpha-galactosidase was noted. 6. Monogalactosyl diglyceride was also hydrolysed by beta-galactosidase to a limited extent, giving rise to diacylglycerol and galactose. 7. Attempts at purification of monogalactosyl diglyceride acyl hydrolase by using protamine sulphate treatment, Sephadex G-100 filtration and DEAE-cellulose chromatography gave a partially purified enzyme which showed 9- and 81-fold higher specific activity towards monogalactosyl diglyceride and digalactosyl diglyceride respectively. This still showed acyl ester hydrolysis activity towards methyl oleate, phosphatidylcholine and triacylglycerol. 8. When sheep, rat and guinea-pig tissues were compared, guinea-pig tissues showed the highest activity towards both monogalactosyl diglyceride and digalactosyl diglyceride. In all the species pancreas showed higher activity than intestine.  相似文献   

13.
Treatment of cultured fibroblasts with thrombin results in the stimulation of cell division and lipid metabolism. Proteolytically active alpha-thrombin rapidly stimulates (a) release of arachidonic acid, (b) generation of inositol phosphates, and (c) increase in cellular diacylglycerol levels. Pretreatment of the fibroblasts with chymotrypsin before alpha-thrombin prevented the first two responses, (a) and (b), and reduced response c. Treatment of fibroblasts with gamma-thrombin, a proteolytic derivative of alpha-thrombin, produced a response indistinguishable from the alpha-thrombin treatment when preceded by chymotrypsin. These data support a model, similar to one for platelets [McGowan, E. B., & Detwiler, T. C. (1986) J. Biol. Chem. 261, 739-746], that fibroblasts possess two coupling mechanisms for the stimulation of lipid metabolism by thrombin. Similar to platelets, one mechanism, R1, mediates the stimulated release of arachidonic acid and is capable of activating Ni, a GTP-binding protein. R1 is inactivated by chymotrypsin and does not respond to gamma-thrombin. The other mechanism, R2, responds to gamma-thrombin and is not activated by chymotrypsin. In contrast to the mechanisms proposed for platelets, we demonstrate that the phospholipase C responsible for the hydrolysis of phosphoinositides is not activated by R2 but is activated via R1. Importantly, stimulation of either mechanism results in the elevation of cellular diacylglycerol. This indicates that the stimulated elevation of diacylglycerol, or those events dependent upon the elevation of diacylglycerol, is not a reliable indicator for establishing the hydrolysis of phosphoinositides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
alpha-Thrombin stimulates a biphasic increase in cellular 1,2-diacylglycerol mass in quiescent IIC9 fibroblasts. This report describes the use of hirudin, a high-affinity inhibitor of alpha-thrombin that renders it catalytically inactive, to investigate the dependence of elevated 1,2-diacylglycerol levels on the presence of catalytically active alpha-thrombin. When cultures were incubated in the presence of alpha-thrombin, 1,2-diacylglycerol levels remained elevated for greater than or equal to 4 h. Inactivation of alpha-thrombin after 15 s did not alter the kinetics of 1,2-diacylglycerol formation occurring over the next 1 h. However, sustained (1-4 h) increases in this lipid were eliminated. Inactivation of alpha-thrombin after 1 h of stimulation resulted in 1) an immediate and reversible decline in 1,2-diacylglycerol levels, 2) elimination of the sustained phase of 1,2-diacylglycerol production, 3) inhibition of the alpha-thrombin-stimulated generation of choline metabolites, and 4) a blunted mitogenic response to alpha-thrombin. These data indicate that early (0-1 h) and late (1-4 h) increases in 1,2-diacylglycerol are differentially dependent on the presence of catalytically active alpha-thrombin. Furthermore, sustained increases in 1,2-diacylglycerol in response to alpha-thrombin are regulated at least in part at the level of generation (via phosphatidylcholine hydrolysis). Our results also support a role for sustained 1,2-diacylglycerol levels in the mitogenic response.  相似文献   

15.
The occurrence and regulation of 1-ether-linked diradylglycerol in human neutrophils were investigated using a sensitive and practical analytical mass method which distinguishes 1-O-alkyl- (EAG) versus 1-acyl (DAG) diglycerides. After phosphorylation of diglycerides to the corresponding [32P]phosphatidic acids using [gamma-32P]ATP and diglyceride kinase (Preiss, J., Loomis, C. R., Bishop, W. R., Stein, R., Niedel, J. E., and Bell, R. M. (1986) J. Biol. Chem. 261, 8597-8600), lipase from Rhizopus arrhizus selectively degraded the 1-acyl-containing species (DAG), but the ether lipid (EAG) was resistant and was identified and quantified after thin layer chromatography separation. By using this method, unstimulated neutrophils were demonstrated to contain both DAG and EAG (100-180 and 40-95 pmol/10(7) cells, respectively). The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) caused a rapid (30 s) and transient increase (1.6-fold) in DAG, but no increase in EAG. Opsonized zymosan produced a 6-8-fold sustained increase in DAG peaking at 2 to 3 min, but only a small (1.7-fold) increase in EAG which was not seen until later times (10 min). Thus, under these stimulation conditions, the major diglyceride was DAG. However, in neutrophils "primed" with cytochalasin B or phorbol ester, formyl-methionyl-leucyl-phenylalanine caused a significant increase in EAG. Neutrophils pretreated with cytochalasin B and then stimulated by fMLP showed a rapid (15-60 s) increase (more than 3-fold) in total diglycerides which was sustained beyond 5 min. At the earliest time points (15-30 s), the increase was due almost entirely to DAG (3-fold), but at 1 min and beyond, EAG comprised as much as 40% of the total (up to a 5-fold increase in EAG). Neutrophils pretreated with phorbol ester prior to fMLP stimulation showed a rapid (around 30 s) more than 2-fold increase in both DAG and EAG. Thus, priming conditions (in particular cytochalasin B) may alter either the access of phospholipase(s) C and/or D to membrane phospholipids or may affect their activities, allowing hydrolysis of 1-O-alkyl-containing lipids to generate 1-O-alkyl-containing diglycerides.  相似文献   

16.
Synthetic diglycerides which differed in unsaturation of fatty acids gave the same incorporation of [14C]galactose from UDP-[14C]galactose when added to acetone powders of spinach chloroplasts up to about 0·6 mg diglyceride/20 mg acetone powder. Diolein and the endogenous diglyceride isolated from the acetone extract of chloroplasts stimulated galactolipid biosynthesis to a similar extent. With all diglycerides used, monogalactosyl diglyceride was the main product with little accompanying synthesis of digalactosyl diglyceride. The radioactivity in the monogalactosyl diglyceride synthesized from UDP-[14C]galactose by whole chloroplasts was distributed widely among the monogalactosyl diglycerides with different fatty acid composition. It is concluded that the enzyme which catalyses the transfer of galactose from UDP-galactose to diglyceride is not specific for polyunsaturated diglycerides and that the polyunsaturated monogalactosyl diglycerides arise either by desaturation of the fatty acyl residues after monogalactolipid synthesis or by transacylation. Acetone powders of chloroplasts prepared from several Gramineae did not exhibit transferase activity although whole chloroplasts were active.  相似文献   

17.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

18.
Elevated cytosolic Ca2+ activates phospholipase D in human platelets   总被引:3,自引:0,他引:3  
We have examined the activation of phospholipase D in human platelets treated with alpha-thrombin. When incubated with 1-O-[9,10-3H2]hexadecyl-2-lysophosphatidylcholine (PtdCho) and 1-alkyl-[32P]lysoPtdCho for 2 h, platelets formed 3H/32P-labeled PtdCho in a ratio of 11:1. After incubation of such labeled platelets with alpha-thrombin for 5 min, increased accumulation of 3H/32P-labeled phosphatidic acid (PtdOH) was detected in the same ratio, indicating the action of phospholipase D. The Ca2+ ionophore A23187 and alpha-thrombin each stimulated the formation of labeled PtdOH as above in a time- and concentration-dependent manner, with only minor changes in labeled diglyceride. A23187 was able to cause increases in labeled PtdOH comparable to those observed with alpha-thrombin. beta-Phorbol 12,13-dibutyrate, an activator of protein kinase C, only slightly stimulated the accumulation of labeled PtOH. The protein kinase C inhibitor, staurosporine, totally blocked these changes but only slightly inhibited the increases in labeled PtdOH promoted by alpha-thrombin. These results suggest that an increase in intracellular Ca2+, rather than protein kinase C activity, is a major factor regulating phospholipase D in platelets exposed to alpha-thrombin. We have also examined the relative contributions of phospholipase D and diglyceride kinase (following phospholipase C action) to PtdOH accumulation in [32P]Pi-labeled platelets by comparing the 32P-specific radioactivities of PtdOH, PtdCho, and metabolic gamma-ATP in control and alpha-thrombin-exposed platelets. Based on these determinations, we conclude that 13 and 87% of incremental PtdOH in human platelets exposed to alpha-thrombin arises via phospholipase D acting on PtdCho and phospholipase C/diglyceride kinase, respectively.  相似文献   

19.
Exposure of skate erythrocytes to hypotonic medium stimulates a rapid increase in levels of 1,2-diacylglycerol. Other treatments which produce cell swelling such as replacement of a portion of medium NaCl with the permeant solutes ethylene glycol or ammonium chloride also stimulate increases in diacylglycerol. Whereas the reduction of medium osmolarity to 460 mosm (from 940) stimulated a persistent diacylglycerol increase, the increase after reduction to 660 mosm was transient, peaking at 2.5 min and then slowly declining. This decline could be prevented by preincubation with the diacylglycerol kinase inhibitor R59022. To investigate the source of the increased diacylglycerol, the rate of incorporation of [32P]PO4 into each major phospholipid was measured. Reduction of osmolarity to 660 mosm stimulated the incorporation of phosphate into phosphatidylcholine markedly, with a smaller increase observed into phosphatidylinositol. To demonstrate phosphatidylcholine hydrolysis, erythrocytes were prelabeled with [32P]PO4. Subsequent exposure to hypotonic (660 mosm) medium stimulated a decrease in radioactivity in phosphatidylcholine and a large increase in radioactivity in phosphatidic acid. When stimulated in the presence of ethanol, 32PO4-labeled phosphatidylethanol was formed, suggesting activation of phospholipase D. In addition, the initial formation of 32PO4-labeled phosphatidic acid was not sensitive to inhibition of diacylglycerol kinase, supporting the role of direct activation of phospholipase D. These results indicate that hypotonicity and the accompanying cell swelling induce cell membrane phospholipid turnover, predominantly phosphatidylcholine, and production of the protein kinase C activator, diacylglycerol, which appears to occur via activation of phospholipase D.  相似文献   

20.
The dermatonecrotic toxin produced by Pasteurella multocida is one of the most potent mitogenic substances known for fibroblasts in vitro. Exposure to recombinant P. multocida toxin (rPMT) causes phospholipase C-mediated hydrolysis of inositol phospholipids, calcium mobilization, and activation of protein kinase C via a poorly characterized mechanism involving G(q/11) family heterotrimeric G proteins. To determine whether the regulation of G protein pathways contributes to the mitogenic effects of rPMT, we have examined the mechanism whereby rPMT stimulates the Erk mitogen-activated protein kinase cascade in cultured HEK-293 cells. Treatment with rPMT resulted in a dose and time-dependent increase in Erk 1/2 phosphorylation that paralleled its stimulation of inositol phospholipid hydrolysis. Both rPMT- and alpha-thrombin receptor- stimulated Erk phosphorylation were selectively blocked by cellular expression of two peptide inhibitors of G(q/11) signaling, the dominant negative mutant G protein-coupled receptor kinase, GRK2(K220R), and the Galpha(q) carboxyl-terminal peptide, Galpha(q)-(305-359). Like alpha-thrombin receptor-mediated Erk activation, the effect of rPMT was insensitive to the protein kinase C inhibitor GF109203X, but was blocked by the epidermal growth factor receptor-specific tyrphostin, AG1478 and by dominant negative mutants of mSos1 and Ha-Ras. These data indicate that rPMT employs G(q/11) family heterotrimeric G proteins to induce Ras-dependent Erk activation via protein kinase C-independent "transactivation" of the epidermal growth factor receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号