首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have characterized the role of Watson-Crick hydrogen bonding in the 3'-terminal base pair on the 3'-5' exonuclease activity of the human mitochondrial DNA polymerase. Nonpolar nucleoside analogs of thymidine (dF) and deoxyadenosine (dQ) were used to eliminate hydrogen bonds while maintaining base pair size and shape. Exonuclease reactions were examined using pre-steady state kinetic methods. The time dependence of removal of natural nucleotides from the primer terminus paired opposite the nonpolar analogs dF and dQ were best fit to a double exponential function. The double exponential kinetics as well as the rates of excision (3-6 s(-1) fast phase, 0.16-0.3 s(-1) slow phase) are comparable with those observed during mismatch removal of natural nucleotides even when the analog was involved in a sterically correct base pair. Additionally, incorporation of the next correct base beyond a nonpolar analog was slow (0.04-0.22 s(-1)), so that more than 95% of terminal base pairs were removed rather than extended. The polymerase responds to all 3'-terminal base pairs containing a nonpolar analog as if it were a mismatch regardless of the identity of the paired base, and kinetic partitioning between polymerase and exonuclease sites failed to discriminate between correct and incorrect base pairs. Thus, sterics alone are insufficient, whereas hydrogen bond formation is essential for proper proofreading selectivity by the mitochondrial polymerase. The enzyme may use the alignment and prevention of fraying provided by proper hydrogen bonding and minor groove hydrogen bonding interactions as critical criteria for correct base pair recognition.  相似文献   

2.
To assess the role of oxidative stress on the replication of mitochondrial DNA, we examined the kinetics of incorporation of 8-oxo-7,8-dihydroguanosine (8-oxodG) triphosphate catalyzed by the human mitochondrial DNA polymerase. Using transient state kinetic methods, we quantified the kinetics of incorporation, excision, and extension beyond a base pair containing 8-oxodG. The 8-oxodGTP was incorporated opposite dC in the template with a specificity constant of 0.005 microM(-1) s(-1), a value approximately 10,000-fold lower than that for dGTP. Once incorporated, 96% of the time 8-oxodGMP was extended by continued polymerization rather than being excised by the proofreading exonuclease. The specificity constant for incorporation of 8-oxodGTP opposite a template dA was 0.2 microM(-1) s(-1), a value 13-fold higher than incorporation opposite a template dC. The 8-oxodG:dA mispair was extended rather than excised at least 70% of the time. Examination of the kinetics of polymerization with 8-oxodG in the template strand also revealed relatively low fidelity in that dCTP would be incorporated only 90% of the time. In nearly 10% of events, dATP would be incorporated, and once incorporated dA (opposite 8-oxodG) was extended rather than excised. The greatest fidelity was against a dTTP:8-oxodG mismatch affording a discrimination value of only 1800. These data reveal that 8-oxodGTP is a potent mutagen. Once it is incorporated into DNA, 8-oxodGMP codes for error prone DNA synthesis. These reactions are likely to play important roles in oxidative stress in mitochondria related to aging and as compounded by nucleoside analogs used to treat human immunodeficiency virus infections.  相似文献   

3.
High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3ʹ-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.  相似文献   

4.
We have examined the ability of the human mitochondrial DNA polymerase to correct errors in DNA sequence using single turnover kinetic methods. The rate of excision of single-stranded DNA ranged from 0.07 to 0.17 x s(-1), depending on the identity of the 3'-base. Excision of the 3'-terminal base from correctly base paired DNA occurred at a rate of 0.05 x s(-1), indicating that the cost of proofreading is minimal, as defined by the ratio of the k(exo) for correctly base-paired DNA divided by the rate of forward polymerization (0.05/37 = 0.14%). Excision of duplex DNA containing 1-7 mismatches was biphasic, and the rate and amplitude of the fast phase increased with the number of mismatches, reaching a maximum of 9 x s(-1). We showed that transfer of DNA from the polymerase to the exonuclease active site and back again occurs through an intramolecular reaction, allowing for a complete cycle of reactions for error correction. For DNA containing a buried mismatch (T:T followed by C:G base pairs), the 3' base was removed at a rate of 3 x s(-1). The addition of nucleotide to the reaction that is identical to the 3' base increased the rate of excision 7-fold to 21 x s(-1). We propose that the free nucleotide enhances the rate of transfer of the DNA to the exonuclease active site by interrupting the correct 3' base pair through interaction with the template base. The exonuclease contribution to fidelity is minimal if the calculation is based on hydrolysis of a single mismatch: (k(exo) + k(pol,over))/(k(pol,over)) = 10, but this value increases to approximately 200 when examining error correction in the presence of nucleotides.  相似文献   

5.
Eckert KA  Opresko PL 《Mutation research》1999,424(1-2):221-236
DNA polymerases differentiate between correct and incorrect substrates during synthesis on undamaged DNA templates through the biochemical steps of base incorporation, primer-template extension and proofreading excision. Recent research examining DNA polymerase processing of abasic, alkylation and oxidative lesions is reviewed in light of these discrimination mechanisms. Inhibition of DNA synthesis results from correct polymerase discrimination against utilization of geometrically incorrect template bases or 3' terminal basepairs. The efficiency of translesion synthesis is thus related to the physical structure of the lesion containing DNA. However, variations in enzyme structure and kinetics result in translesion synthesis efficiencies that are also dependent upon the DNA polymerase. With a low probability, polymerase misinsertion events create a 3' lesion terminus which is geometrically favored over the correct lesion basepair, resulting in mutagenic translesion synthesis. For example, both polymerase alpha and polymerase beta appear to require the formation of a stable 3' primer-template structure for efficient abasic site translesion synthesis. However, the enzymes differ as to the precise molecular make-up of the stable DNA structure, resulting in different mutational specificities. Similar mechanisms may be applicable to oxidative damage, where mutational specificities dependent upon the DNA polymerase also have been observed. In vitro reaction conditions also influence DNA polymerase processing of lesions. Using an in vitro herpes simplex virus thymidine kinase (HSV-tk) gene forward mutation assay, we demonstrate that high dNTP substrate concentrations affect the mutagenic specificity of translesion synthesis using alkylated templates. The exonuclease-deficient Klenow polymerase error frequency for G-->A transition mutations using templates modified by N-ethyl-N-nitrosourea (ENU) was four-fold higher at 1000 microM [dNTP], relative to 50 microM [dNTP], consistent with an increased efficiency of extension of the etO6G.T mispair. Moreover, the frequency of other ENU-induced polymerase errors was suppressed when polymerase reactions contained 50 microM dNTP, relative to 1000 microM dNTP. The efficiency of proofreading as a polymerase error discrimination mechanism reflects a balance between the competing processes of 3'-->5' exonuclease removal of mispairs and polymerization of the next correct nucleotide. Polymerases that are devoid of a proofreading exonuclease generally display enhanced abasic site translesion synthesis relative to proofreading-proficient enzymes. In addition, the proofreading exonucleases of Escherichia coli Pol I and T4 DNA polymerases have been found to remove mispairs caused by abasic sites and oxidative lesions, respectively, resulting in lowered polymerase error rates. However, the magnitude of the exonuclease effect is small (less than 10-fold), and highly dependent upon the DNA polymerase-exonuclease. We have studied proofreading exonuclease removal of alkylation damage in the HSV-tk forward assay. We observed no significant reduction in the magnitude of the mutant frequency vs. dose-response curves when N-methyl-N-nitrosourea or ENU-treated templates were used in exonuclease-proficient Klenow polymerase reactions, as compared to the exonuclease-deficient polymerase reactions. Thus, available data suggest that proofreading excision of endogenous lesion mispairs does occur, but the efficiency is dependent upon the lesion and the DNA polymerase-exonuclease studied.  相似文献   

6.
We have quantified the fidelity of polymerization of DNA by human mitochondrial DNA polymerase using synthetic DNA oligonucleotides and recombinant holoenzyme and examining each of the possible 16-base pair combinations. Although the kinetics of incorporation for all correct nucleotides are similar, with an average Kd of 0.8 microM and an average k(pol) of 37 s(-1), the kinetics of misincorporation vary widely. The ground state binding Kd of incorrect bases ranges from a low of 25 microM for a dATP:A mispair to a high of 360 microM for a dCTP:T mispair. Similarly, the rates of incorporation of incorrect bases vary from 0.0031 s(-1) for a dCTP:C mispair to 1.16 s(-1) for a dGTP:T mispair. Due to the variability in the kinetic parameters for misincorporation, the estimates of fidelity range from 1 error in 3563 nucleotides for dGTP:T to 1 error in 2.3 x 10(6) nucleotides for dCTP:C. Interestingly, the discrimination against a dGTP:T mismatch is 16.5 times lower than that of a dTTP:G mismatch due to a tighter Kd for ground state binding and a faster rate of incorporation of the dGTP:T mismatch relative to the dTTP:G mismatch. We calculate an average fidelity of 1 error in 440,000 nucleotides.  相似文献   

7.
B T Eger  S J Benkovic 《Biochemistry》1992,31(38):9227-9236
The minimal kinetic mechanism for misincorporation of a single nucleotide (dATP) into a short DNA primer/template (9/20-mer) by the Klenow fragment of DNA polymerase I [KF(exo+)] has been previously published [Kuchta, R. D., Benkovic, P., & Benkovic, S.J. (1988) Biochemistry 27, 6716-6725]. In this paper are presented refinements to this mechanism. Pre-steady-state measurements of correct nucleotide incorporation (dTTP) in the presence of a single incorrect nucleotide (dATP) with excess KF-(exo+) demonstrated that dATP binds to the KF(exo+)-9/20-mer complex in two steps preceding chemistry. Substitution of (alpha S)dATP for dATP yielded identical two-step binding kinetics, removing nucleotide binding as a cause of the elemental effect on the rate of misincorporation. Pyrophosphate release from the ternary species [KF'(exo+)-9A/20-mer-PPi] was found to occur following a rate-limiting conformational change, with this species partitioning equally to either nucleotide via internal pyrophosphorolysis or to misincorporated product. The rate of 9A/20-mer dissociation from the central ternary complex (KF'-9A/20-mer-PPi) was shown to be negligible relative to exonucleolytic editing. Pyrophosphorolysis of the misincorporated DNA product (9A/20-mer), in conjunction with measurement of the rate of dATP misincorporation, permitted determination of the overall equilibrium constant for dATP misincorporation and provided a value similar to that measured for correct incorporation. A step by step comparison of the polymerization catalyzed by the Klenow fragment for correct and incorrect nucleotide incorporation emphasizes that the major source of the enzyme's replicative fidelity arises from discrimination in the actual chemical step and from increased exonuclease activity on the ternary misincorporated product complex owing to its slower passage through the turnover sequence.  相似文献   

8.
The ability of wild type and mutant T4 DNA polymerases to discriminate in the utilization of the base analog 2-aminopurine (2AP) and the fluorescence of 2AP were used to determine how DNA polymerases distinguish between correct and incorrect nucleotides. Because T4 DNA polymerase incorporates dTMP opposite 2AP under single-turnover conditions, it was possible to compare directly the kinetic parameters for incorporation of dTMP opposite template 2AP to the parameters for incorporation of dTMP opposite template A without the complication of enzyme dissociation. The most significant difference detected was in the K(d) for dTTP, which was 10-fold higher for incorporation of dTMP opposite template 2AP (approximately 367 microm) than for incorporation of dTMP opposite template A (approximately 31 microm). In contrast, the dTMP incorporation rate was reduced only about 2-fold from about 318 s(-1) with template A to about 165 s(-1) for template 2AP. Discrimination is due to the high selectivity in the initial nucleotide-binding step. T4 DNA polymerase binding to DNA with 2AP in the template position induces formation of a nucleotide binding pocket that is preshaped to bind dTTP and to exclude other nucleotides. If nucleotide binding is hindered, initiation of the proofreading pathway acts as an error avoidance mechanism to prevent incorporation of incorrect nucleotides.  相似文献   

9.
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.  相似文献   

10.
This review summarizes our current understanding of the structural, kinetic and thermodynamic basis for the extraordinary accuracy of high-fidelity DNA polymerases. High-fidelity DNA polymerases, such as the enzyme responsible for the replication of bacteriophage T7 DNA, discriminate against similar substrates with an accuracy that approaches one error in a million base pairs while copying DNA at a rate of approximately 300 base pairs per second. When the polymerase does make an error, it stalls, giving time for the slower proofreading exonuclease to remove the mismatch so that the overall error frequency approaches one in a billion. Structural analysis reveals a large change in conformation after nucleotide binding from an open to a closed state. Kinetic analysis has shown that the substrate-induced structural change plays a key role in the discrimination between correct and incorrect base pairs by governing whether a nucleotide will be retained and incorporated or rapidly released.  相似文献   

11.
We have examined the fidelity of polymerization catalyzed by the human mitochondrial DNA polymerase using wild-type and exonuclease-deficient (E200A mutation) forms of recombinant, reconstituted holoenzyme. Each of the four nucleotides bind and incorporate with similar kinetics; the average dissociation constant for ground state binding is 0.8 microm, and the average rate of polymerization is 37 x s(-1), defining a specificity constant kcat/Km = 4.6 x 10(7) x m(-1) x s(-1). Mismatched nucleotides show weaker ground-state nucleotide binding affinities ranging from 57 to 364 microm and slower rates of polymerization ranging from 0.013 to 1.16 x s(-1). The kinetic parameters yield fidelity estimates of 1 error out of 260,000 nucleotides for a T:T mismatch, 3563 for G:T, and 570,000 for C:T. The accessory subunit increases fidelity 14-fold by facilitating both ground-state binding and the incorporation rate of the correct A:T base pair compared with a T:T mismatch. Correctly base-paired DNA dissociates from the polymerase at a rate of 0.02 x s(-1) promoting processive polymerization. Thus, the mitochondrial DNA polymerase catalyzed incorporation with an average processivity of 1850, defined by the ratio of polymerization rate to the dissociation rate (37/0.02) and with an average fidelity of one error in 280,000 base pairs.  相似文献   

12.
13.
14.
Pre-steady-state and steady-state kinetics of nucleotide incorporation and excision were used to assess potential mechanisms by which the fidelity of the herpes simplex virus type 1 DNA polymerase catalytic subunit (Pol) is enhanced by its processivity factor, UL42. UL42 had no effect on the pre-steady-state rate constant for correct nucleotide incorporation (150 s(-1)) nor on the primary rate-limiting conformational step. However, the equilibrium dissociation constant for the enzyme in a stable complex with primer-template was 44 nm for Pol and 7.0 nm for Pol/UL42. The catalytic subunit and holoenzyme both selected against incorrect nucleotide incorporation predominantly at the level of nucleotide affinity, although UL42 slowed by 4-fold the maximum rate of incorporation of incorrect, compared with correct, nucleotide. Pol, with or without UL42, cleaved matched termini at a slower rate than mismatched ones, but UL42 did not significantly alter the pre-steady-state rate constant for mismatch excision ( approximately 16 s(-1)). The steady-state rate constant for nucleotide addition was 0.09 s(-1) and 0.03 s(-1) for Pol and Pol/UL42, respectively, and enzyme dissociation was the rate-limiting step. The longer half-life for DNA complexes with Pol/UL42 (23 s) compared with that with Pol (8 s) affords a greater probability for excision when a misincorporation event does occur, accounting predominantly for the failure of Pol/UL42 to accumulate mismatched product at moderate nucleotide concentrations.  相似文献   

15.
Human DNA polymerase ι (Polι) is a member of the Y family of DNA polymerases involved in translesion DNA synthesis. Polι is highly unusual in that it possesses a high fidelity on template A, but has an unprecedented low fidelity on template T, preferring to misincorporate a G instead of an A. To understand the mechanisms of nucleotide incorporation opposite different template bases by Polι, we have carried out pre-steady-state kinetic analyses of nucleotide incorporation opposite templates A and T. These analyses have revealed that opposite template A, the correct nucleotide is preferred because it is bound tighter and is incorporated faster than the incorrect nucleotides. Opposite template T, however, the correct and incorrect nucleotides are incorporated at very similar rates, and interestingly, the greater efficiency of G misincorporation relative to A incorporation opposite T arises predominantly from the tighter binding of G. Based on these results, we propose that the incipient base pair is accommodated differently in the active site of Polι dependent upon the template base and that when T is the templating base, Polι accommodates the wobble base pair better than the Watson-Crick base pair.  相似文献   

16.
The DNA polymerase from the bacteriophage T4 is part of a multienzyme complex required for the synthesis of DNA. As a first step in understanding the contributions of individual proteins to the dynamic properties of the complex, e.g., turnover, processivity, and fidelity of replication, the minimal kinetic schemes for the polymerase and exonuclease activities of the gene 43 protein have been determined by pre-steady-state kinetic methods and fit by computer simulation. A DNA primer/template (13/20-mer) was used as substrate; duplexes that contained more single-strand DNA resulted in nonproductive binding of the polymerase. The reaction sequence features an ordered addition of 13/20-mer followed by dATP to the T4 enzyme (dissociation constants of 70 nM and 20 microM) followed by rapid conversion (400 s-1) of the T4.13/20-mer.dATP complex to the T4.14/20-mer.PPi product species. A slow step (2 s-1) following PPi release limits a single turnover, although this step is bypassed in multiple incorporations (13/20-mer-->17/20-mer) which occur at rates > 400 s-1. Competition between correct versus incorrect nucleotides relative to the template strand indicates that the dissociation constants for the incorrect nucleotides are at millimolar values, thus providing evidence that the T4 polymerase, like the T7 but unlike the Klenow fragment polymerases, discriminates by factors > 10(3) against misincorporation in the nucleotide binding step. The exonuclease activity of the T4 enzyme requires an activation step, i.e., T4.DNA-->T4.(DNA)*, whose rate constants reflect whether the 3'-terminus of the primer is matched or mismatched; for matched 13/20-mer the constant is 1 s-1, and for mismatched 13T/20-mer, 5 s-1. Evidence is presented from crossover experiments that this step may represent a melting of the terminus of the duplex, which is followed by rapid exonucleolytic cleavage (100s-1). In the presence of the correct dNTP, primer extension is the rate-limiting step rather than a step involving travel of the duplex between separated exonuclease and polymerase sites. Since the rate constant for 13/20-mer or 13T/20-mer dissociation from the enzyme is 6 or 8 s-1 and competes with that for activation, the exonucleolytic editing by the enzyme alone in a single pass is somewhat inefficient (5 s-1/(8 s-1+5 s-1)), ca. 40%. Consequently, a major role for the accessory proteins may be to slow the rate of enzyme.substrate dissociation, thereby increasing overall fidelity and processivity.  相似文献   

17.
DNA polymerases are essential enzymes responsible for replication and repair of DNA in all organisms. To replicate DNA with high fidelity, DNA polymerases must select the correct incoming nucleotide substrate during each cycle of nucleotide incorporation, in accordance with the templating base. When an incorrect nucleotide is sometimes inserted, the polymerase uses a separate 3'→5' exonuclease to remove the misincorporated base (proofreading). Large conformational rearrangements of the polymerase-DNA complex occur during both the nucleotide incorporation and proofreading steps. Single-molecule fluorescence spectroscopy provides a unique tool for observation of these dynamic conformational changes in real-time, without the need to synchronize a population of DNA-protein complexes.  相似文献   

18.
Fiala KA  Suo Z 《Biochemistry》2004,43(7):2106-2115
Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is a thermostable archaeal enzyme and a member of the error-prone and lesion-bypass Y-family. In this paper, for the first time, the fidelity of a Y-family polymerase, Dpo4, was determined using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into an undamaged DNA substrate 21/41-mer at 37 degrees C. We assessed single-turnover (with Dpo4 in molar excess over DNA) saturation kinetics for all 16 possible nucleotide incorporations. The fidelity of Dpo4 was estimated to be in the range of 10(-3)-10(-4). Interestingly, the ground-state binding affinity of correct nucleotides (70-230 microM) is 10-50-fold weaker than those of replicative DNA polymerases. Such a low affinity is consistent with the lack of interactions between Dpo4 and the bound nucleotides as revealed in the crystal structure of Dpo4, DNA, and a matched nucleotide. The affinity of incorrect nucleotides for Dpo4 is approximately 2-10-fold weaker than that of correct nucleotides. Intriguingly, the mismatched dCTP has an affinity similar to that of the matched nucleotides when it is incorporated against a pyrimidine template base flanked by a 5'-template guanine. The incoming dCTP likely skips the first available template base and base pairs with the 5'-template guanine, as observed in the crystal structure of Dpo4, DNA, and a mismatched nucleotide. The mismatch incorporation rates, regardless of the 5'-template base, were approximately 2-3 orders of magnitude slower than the incorporation rates for matched nucleotides, which is the predominant contribution to the fidelity of Dpo4.  相似文献   

19.
Fiala KA  Abdel-Gawad W  Suo Z 《Biochemistry》2004,43(21):6751-6762
DNA polymerase lambda (Pollambda), a member of the X-family DNA polymerases, possesses an N-terminal BRCT domain, a proline-rich domain, and a C-terminal polymerase beta-like domain (tPollambda). In this paper, we determined a minimal kinetic mechanism and the fidelity of tPollambda using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into a one-nucleotide gapped DNA substrate, 21-19/41-mer (primer-primer/template). Our kinetic studies revealed an incoming nucleotide bound to the enzyme.DNA binary complex at a rate constant of 1.55 x 10(8) M(-1) s(-1) to form a ground-state ternary complex while the nucleotide dissociated from this complex at a rate constant of 300 s(-1). Since DNA dissociation from tPollambda (0.8 s(-1)) was less than 3-fold slower than polymerization, we measured saturation kinetics for all 16 possible nucleotide incorporations under single turnover conditions to eliminate the complication resulting from multiple turnovers. The fidelity of tPollambda was estimated to be in the range of 10(-2)-10(-4) and was sequence-dependent. Surprisingly, the ground-state binding affinity of correct (1.1-2.4 microM) and incorrect nucleotides (1.4-8.4 microM) was very similar while correct nucleotides (3-6 s(-1)) were incorporated much faster than incorrect nucleotides (0.001-0.2 s(-1)). Interestingly, the misincorporation of dGTP opposite a template base thymine (0.2 s(-1)) was more rapid than all other misincorporations, leading to the lowest fidelity (3.2 x 10(-2)) among all mismatched base pairs. Additionally, tPollambda was found to possess weak strand-displacement activity during polymerization. These biochemical properties suggest that Pollambda likely fills short-patched DNA gaps in base excision repair pathways and participates in mammalian nonhomologous end-joining pathways to repair double-stranded DNA breaks.  相似文献   

20.
Arora K  Beard WA  Wilson SH  Schlick T 《Biochemistry》2005,44(40):13328-13341
Molecular dynamics simulations of DNA polymerase (pol) beta complexed with different incorrect incoming nucleotides (G x G, G x T, and T x T template base x incoming nucleotide combinations) at the template-primer terminus are analyzed to delineate structure-function relationships for aberrant base pairs in a polymerase active site. Comparisons, made to pol beta structure and motions in the presence of a correct base pair, are designed to gain atomically detailed insights into the process of nucleotide selection and discrimination. In the presence of an incorrect incoming nucleotide, alpha-helix N of the thumb subdomain believed to be required for pol beta's catalytic cycling moves toward the open conformation rather than the closed conformation as observed for the correct base pair (G x C) before the chemical reaction. Correspondingly, active-site residues in the microenvironment of the incoming base are in intermediate conformations for non-Watson-Crick pairs. The incorrect incoming nucleotide and the corresponding template residue assume distorted conformations and do not form Watson-Crick bonds. Furthermore, the coordination number and the arrangement of ligands observed around the catalytic and nucleotide binding magnesium ions are mismatch specific. Significantly, the crucial nucleotidyl transferase reaction distance (P(alpha)-O3') for the mismatches between the incoming nucleotide and the primer terminus is not ideally compatible with the chemical reaction of primer extension that follows these conformational changes. Moreover, the extent of active-site distortion can be related to experimentally determined rates of nucleotide misincorporation and to the overall energy barrier associated with polymerase activity. Together, our studies provide structure-function insights into the DNA polymerase-induced constraints (i.e., alpha-helix N conformation, DNA base pair bonding, conformation of protein residues in the vicinity of dNTP, and magnesium ions coordination) during nucleotide discrimination and pol beta-nucleotide interactions specific to each mispair and how they may regulate fidelity. They also lend further support to our recent hypothesis that additional conformational energy barriers are involved following nucleotide binding but prior to the chemical reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号