首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Sanghani PC  Bosron WF  Hurley TD 《Biochemistry》2002,41(51):15189-15194
Human glutathione-dependent formaldehyde dehydrogenase plays an important role in the metabolism of glutathione adducts such as S-(hydroxymethyl)glutathione and S-nitrosoglutathione. The role of specific active site residues in binding these physiologically important substrates and the structural changes during the catalytic cycle of glutathione-dependent formaldehyde dehydrogenase was examined by determining the crystal structure of a ternary complex with S-(hydroxymethyl)glutathione and the reduced coenzyme to 2.6 A resolution. The formation of the ternary complex caused the movement of the catalytic domain toward the coenzyme-binding domain. This represents the first observation of domain closure in glutathione-dependent formaldehyde dehydrogenase in response to substrate binding. A water molecule adjacent to the 2'-ribose hydroxyl of NADH suggests that the alcohol proton is relayed to solvent directly from the coenzyme, rather than through the action of the terminal histidine residue as observed in the proton relay system for class I alcohol dehydrogenases. S-(Hydroxymethyl)glutathione is directly coordinated to the active site zinc and forms interactions with the highly conserved residues Arg114, Asp55, Glu57, and Thr46. The active site zinc has a tetrahedral coordination environment with Cys44, His66, and Cys173 as the three protein ligands in addition to S-(hydroxymethyl)glutathione. This is in contrast to zinc coordination in the binary coenzyme complex where all of the ligands were contributed by the enzyme and included Glu67 as the fourth protein ligand. This change in zinc coordination is accomplished by an approximately 2.3 A movement of the catalytic zinc.  相似文献   

2.
The formation of S-hydroxymethylglutathione from formaldehyde and glutathione is a central reaction in the consumption of the cytotoxin formaldehyde in some methylotrophic bacteria as well as in many other organisms. We describe here the discovery of an enzyme from Paracoccus denitrificans that accelerates this spontaneous condensation reaction. The rates of S-hydroxymethylglutathione formation and cleavage were determined under equilibrium conditions via two-dimensional proton exchange NMR spectroscopy. The pseudo first order rate constants k(1)* were estimated from the temperature dependence of the reaction and the signal to noise ratio of the uncatalyzed reaction. At 303 K and pH 6.0 k(1)* was found to be 0.02 s(-1) for the spontaneous reaction. A 10-fold increase of the rate constant was observed upon addition of cell extract from P. denitrificans grown in the presence of methanol corresponding to a specific activity of 35 units mg(-1). Extracts of cells grown in the presence of succinate revealed a lower specific activity of 11 units mg(-1). The enzyme catalyzing the conversion of formaldehyde and glutathione was purified and named glutathione-dependent formaldehyde-activating enzyme (Gfa). The gene gfa is located directly upstream of the gene for glutathione-dependent formaldehyde dehydrogenase, which catalyzes the subsequent oxidation of S-hydroxymethylglutathione. Putative proteins with sequence identity to Gfa from P. denitrificans are present also in Rhodobacter sphaeroides, Sinorhizobium meliloti, and Mesorhizobium loti.  相似文献   

3.
Formaldehyde, a major industrial chemical, is classified as a carcinogen because of its high reactivity with DNA. It is inactivated by oxidative metabolism to formate in humans by glutathione-dependent formaldehyde dehydrogenase. This NAD(+)-dependent enzyme belongs to the family of zinc-dependent alcohol dehydrogenases with 40 kDa subunits and is also called ADH3 or chi-ADH. The first step in the reaction involves the nonenzymatic formation of the S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione. When formaldehyde concentrations exceed that of glutathione, nonoxidizable adducts can be formed in vitro. The S-(hydroxymethyl)glutathione adduct will be predominant in vivo, since circulating glutathione concentrations are reported to be 50 times that of formaldehyde in humans. Initial velocity, product inhibition, dead-end inhibition, and equilibrium binding studies indicate that the catalytic mechanism for oxidation of S-(hydroxymethyl)glutathione and 12-hydroxydodecanoic acid (12-HDDA) with NAD(+) is random bi-bi. Formation of an E.NADH.12-HDDA abortive complex was evident from equilibrium binding studies, but no substrate inhibition was seen with 12-HDDA. 12-Oxododecanoic acid (12-ODDA) exhibited substrate inhibition, which is consistent with a preferred pathway for substrate addition in the reductive reaction and formation of an abortive E.NAD(+).12-ODDA complex. The random mechanism is consistent with the published three-dimensional structure of the formaldehyde dehydrogenase.NAD(+) complex, which exhibits a unique semi-open coenzyme-catalytic domain conformation where substrates can bind or dissociate in any order.  相似文献   

4.
Since cellular zinc is not freely available as the inorganic ion, zinc proteins must acquire their metal from some other source. But how, when, and where they acquire it is unknown. Metallothionein can participate in the controlled delivery of zinc by binding it with high stability and by mobilizing it through a novel biochemical mechanism that critically depends on the redox activity of the zinc-sulfur bond. Thus, metallothionein activates zinc-depleted alcohol (sorbitol) dehydrogenases by glutathione-modulated zinc transfer. In addition to its catalytic, co-catalytic, and/or structural roles in a myriad of enzymes, zinc also inhibits some enzymes that are not necessarily zinc enzymes, e.g. glyceraldehyde and glycerol phosphate dehydrogenases, and aldehyde dehydrogenase. Zinc inhibits glycerol phosphate dehydrogenase with an IC(50) value of 100 nM. Zinc binding is slow at low pH, but instantaneous at high pH. Thionein, the apoprotein of metallothionein, re-activates the zinc-inhibited enzyme. Tight inhibition by zinc and activation of glycerol phosphate dehydrogenase by thionein, a biological chelating agent, provide further support that modulation of zinc binding by metallothionein and thionein is a physiological mechanism of enzyme regulation. Since glycerol phosphate dehydrogenase is a key enzyme in energy metabolism, the effect of zinc is expected to elicit significant physiological responses.  相似文献   

5.
Co-ordination of zinc to the thiol group of cysteine allows mobilization of zinc through oxidation of its ligand. This molecular property links the binding and release of zinc in metallothionein (MT) to the cellular redox state [Maret W. & Vallee B.L. (1998) Proc. Natl Acad. Sci. USA 95, 3483-3488]. Biological disulfides such as glutathione disulfide (GSSG) oxidize MT with concomitant release of zinc, while glutathione (GSH) reduces the oxidized protein to thionein, which then binds to available zinc. Neither of these two redox processes is very efficient, even at high concentrations of GSSG or GSH. However, the GSH/GSSG redox pair can efficiently couple with the MT/thionein system in the presence of a selenium compound that has the capacity to form a catalytic selenol(ate). This coupling provides a very effective means of modulating oxidation and reduction. Remarkably, selenium compounds catalyze the oxidation of MT even under overall reducing conditions such as those prevailing in the cytosol. In this manner, the binding and release of zinc from zinc-thiolate co-ordination sites is linked to redox catalysis by selenium compounds, changes in the glutathione redox state, and the availability of either a zinc donor or a zinc acceptor. The results also suggest that the pharmacological actions of selenium compounds in cancer prevention and other antiviral and anti-inflammatory therapeutic applications, as well as unknown functions of selenium-containing proteins, may relate to coupling between the thiol redox state and the zinc state.  相似文献   

6.
7.
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a complete inactivation of the enzyme. The activity lost was restored by the addition of zinc ions, by which the zinc content was also reversed to almost the same level as that of the native enzyme. Another zinc atom that was resistant to metal chelator-treatment was liberated from the enzyme only after the irreversible denaturation of the enzyme. These results indicate that the formaldehyde dehydrogenase of P. putida is a zinc metalloenzyme and one of two zinc atoms per subunit participates in the catalytic activity of the enzyme, another zinc being presumably involved in maintaining the native conformation of the enzyme. Treatment of the enzyme with bipyridine also caused a reversible inactivation of the enzyme, but the zinc content remained unchanged. The spectrophotometric analysis indicated that the formation of a enzyme-Zn-bipyridine complex took place. Incubation of the enzyme with p-chloromercuribenzoate also resulted in a complete loss of the activity. These results suggest that an intrinsic zinc and sulfhydryl group together with NAD+ participate in the dehydrogenation reaction of substrate by the enzyme.  相似文献   

8.
Most organisms use glutathione to regulate intracellular thiol redox balance and protect against oxidative stress; protozoa, however, utilize trypanothione for this purpose. Trypanothione biosynthesis requires ATP-dependent conjugation of glutathione (GSH) to the two terminal amino groups of spermidine by glutathionylspermidine synthetase (GspS) and trypanothione synthetase (TryS), which are considered as drug targets. GspS catalyzes the penultimate step of the biosynthesis-amide bond formation between spermidine and the glycine carboxylate of GSH. We report herein five crystal structures of Escherichia coli GspS in complex with substrate, product or inhibitor. The C-terminal of GspS belongs to the ATP-grasp superfamily with a similar fold to the human glutathione synthetase. GSH is likely phosphorylated at one of two GSH-binding sites to form an acylphosphate intermediate that then translocates to the other site for subsequent nucleophilic addition of spermidine. We also identify essential amino acids involved in the catalysis. Our results constitute the first structural information on the biochemical features of parasite homologs (including TryS) that underlie their broad specificity for polyamines.  相似文献   

9.
GSNO (S-nitrosoglutathione) is emerging as a key regulator in NO signalling as it is in equilibrium with S-nitrosated proteins. Accordingly, it is of great interest to investigate GSNO metabolism in terms of competitive pathways and redox state. The present study explored ADH3 (alcohol dehydrogenase 3) in its dual function as GSNOR (GSNO reductase) and glutathione-dependent formaldehyde dehydrogenase. The glutathione adduct of formaldehyde, HMGSH (S-hydroxymethylglutathione), was oxidized with a k(cat)/K(m) value approx. 10 times the k(cat)/K(m) value of GSNO reduction, as determined by fluorescence spectroscopy. HMGSH oxidation in vitro was greatly accelerated in the presence of GSNO, which was concurrently reduced under cofactor recycling. Hence, considering the high cytosolic NAD(+)/NADH ratio, formaldehyde probably triggers ADH3-mediated GSNO reduction by enzyme-bound cofactor recycling and might result in a decrease in cellular S-NO (S-nitrosothiol) content in vivo. Formaldehyde exposure affected S-NO content in cultured cells with a trend towards decreased levels at concentrations of 1-5 mM, in agreement with the proposed mechanism. Product formation after GSNO reduction to the intermediate semimercaptal responded to GSH/GSNO ratios; ratios up to 2-fold allowed the spontaneous rearrangement to glutathione sulfinamide, whereas 5-fold excess of GSH favoured the interception of the intermediate to form glutathione disulfide. The sulfinamide and its hydrolysis product, glutathione sulfinic acid, inhibited GST (glutathione transferase) activity. Taken together, the findings of the present study provide indirect evidence for formaldehyde as a physiological trigger of GSNO depletion and show that GSNO reduction can result in the formation of GST inhibitors, which, however, is prevented under normal cellular redox conditions.  相似文献   

10.
Methionine aminopeptidase (MetAP) catalyzes the co-translational processing of initiator methionine from nascent proteins. A cellular requirement for MetAP activity is likely due to dysfunction of MetAP substrates that require methionine removal for proper protein function. Glutamine-fructose-6-phosphate aminotransferase (Gfa1) is an essential enzyme in yeast that catalyzes the first and rate-limiting step in hexosamine biosynthesis. The alpha-amino group of Gfa1 Cys-1 has been proposed to act as a nucleophile in the catalytic mechanism. We used two mutational strategies to evaluate whether removal of initiator methionine, catalyzed by MetAP, is required for Gfa1 function. Our results demonstrate that exposure of the alpha-amino group of Cys-1 is required for normal Gfa1 function as failure to do so results in decreased enzyme activity and slow growth. Further, either isoform of MetAP in yeast is sufficient for Gfa1 processing in vivo. These results are the first demonstration of an endogenous yeast protein that requires the exposure of the alpha-amino group by MetAP action for normal function. Additionally, Gfa1 will be a relevant target in therapeutic or physiological applications in which MetAP activity is inhibited.  相似文献   

11.
Identity and functions of CxxC-derived motifs   总被引:8,自引:0,他引:8  
Fomenko DE  Gladyshev VN 《Biochemistry》2003,42(38):11214-11225
Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.  相似文献   

12.
The results of a DFT theoretical investigation on the catalytic mechanism of the QC enzyme are presented. A rather large model-system is used. It includes the most important residues that are believed to play a key-role in the catalysis. The computational results show that the rate-determining step of the catalytic process is not the nucleophilic attack leading to the cycle formation (a very easy and fast process with a negligible barrier of 0.8 kcal mol(-1)), but a proton transfer, which is assisted by the Glu201 residue acting as a proton shuttle (general base and general acid). A complex network of hydrogen bonds (involving Asp248 and other residues) contribute to lower the activation barrier for the proton shift which affords the formation of an ammonia molecule bonded to the substrate. The ammonia molecule is a good leaving group which is easily expelled from the substrate in the last step of the catalytic cycle, but remains anchored to the enzyme as a ligand of the zinc cation. The metal plays a key-role in assisting the nucleophilic attack (electrostatic catalysis) since it polarizes the substrate gamma-amide carbonyl group (its electrophilic character increases). Also, the strength of the nucleophilic nitrogen (substrate alpha-amino group) is enhanced by hydrogen bonds involving the Glu201 residue. The computations outline the important role of Trp329 in helping the substrate binding process and stabilizing the cyclization transition state.  相似文献   

13.
Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the MoVI=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the MoVI=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the MoVI=O species.  相似文献   

14.
The structures of human glyoxalase I in complexes with S-(N-hydroxy-N-p-iodophenylcarbamoyl)glutathione (HIPC-GSH) and S-p-nitrobenzyloxycarbonylglutathione (NBC-GSH) have been determined at 2.0 and 1.72 A resolution, respectively. HIPC-GSH is a transition state analogue mimicking the enediolate intermediate that forms along the reaction pathway of glyoxalase I. In the structure, the hydroxycarbamoyl function is directly coordinated to the active site zinc ion. In contrast, the equivalent group in the NBC-GSH complex is approximately 6 A from the metal in a conformation that may resemble the product complex with S-D-lactoylglutathione. In this complex, two water molecules occupy the liganding positions at the zinc ion occupied by the hydroxycarbamoyl function in the enediolate analogue complex. Coordination of the transition state analogue to the metal enables a loop to close down over the active site, relative to its position in the product-like structure, allowing the glycine residue of the glutathione moiety to hydrogen bond with the protein. The structure of the complex with the enediolate analogue supports an "inner sphere mechanism" in which the GSH-methylglyoxal thiohemiacetal substrate is converted to product via a cis-enediolate intermediate. The zinc ion is envisioned to play an electrophilic role in catalysis by directly coordinating this intermediate. In addition, the carboxyl of Glu 172 is proposed to be displaced from the inner coordination sphere of the metal ion during substrate binding, thus allowing this group to facilitate proton transfer between the adjacent carbon atoms of the substrate. This proposal is supported by the observation that in the complex with the enediolate analogue the carboxyl group of Glu 172 is 3.3 A from the metal and is in an ideal position for reprotonation of the transition state intermediate. In contrast, Glu 172 is directly coordinated to the zinc ion in the complexes with S-benzylglutathione and with NBC-GSH.  相似文献   

15.
In mammals, eight aminoacyl-tRNA synthetases (AARSs) and three AARS-interacting multifunctional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC). MSC components possess extension peptides for MSC assembly and specific functions. Human cytosolic methionyl-tRNA synthetase (MRS) has appended peptides at both termini of the catalytic main body. The N-terminal extension includes a glutathione transferase (GST) domain responsible for interacting with AIMP3, and a long linker peptide between the GST and catalytic domains. Herein, we determined crystal structures of the human MRS catalytic main body, and the complex of the GST domain and AIMP3. The structures reveal human-specific structural details of the MRS, and provide a dynamic model for MRS at the level of domain orientation. A movement of zinc knuckles inserted in the catalytic domain is required for MRS catalytic activity. Depending on the position of the GST domain relative to the catalytic main body, MRS can either block or present its tRNA binding site. Since MRS is part of a huge MSC, we propose a dynamic switching between two possible MRS conformations; a closed conformation in which the catalytic domain is compactly attached to the MSC, and an open conformation with a free catalytic domain dissociated from other MSC components.  相似文献   

16.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

17.
In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.  相似文献   

18.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

19.
GSTs (glutathione transferases) are a family of enzymes that primarily catalyse nucleophilic addition of the thiol of GSH (reduced glutathione) to a variety of hydrophobic electrophiles in the cellular detoxification of cytotoxic and genotoxic compounds. GSTks (Kappa class GSTs) are a distinct class because of their unique cellular localization, function and structure. In the present paper we report the crystal structures of hGSTk (human GSTk) in apo-form and in complex with GTX (S-hexylglutathione) and steady-state kinetic studies, revealing insights into the catalytic mechanism of hGSTk and other GSTks. Substrate binding induces a conformational change of the active site from an 'open' conformation in the apo-form to a 'closed' conformation in the GTX-bound complex, facilitating formations of the G site (GSH-binding site) and the H site (hydrophobic substrate-binding site). The conserved Ser(16) at the G site functions as the catalytic residue in the deprotonation of the thiol group and the conserved Asp(69), Ser(200), Asp(201) and Arg(202) form a network of interactions with γ-glutamyl carboxylate to stabilize the thiolate anion. The H site is a large hydrophobic pocket with conformational flexibility to allow the binding of different hydrophobic substrates. The kinetic mechanism of hGSTk conforms to a rapid equilibrium random sequential Bi Bi model.  相似文献   

20.
In Anopheles dirus glutathione transferase D3-3, position 64 is occupied by a functionally conserved glutamate residue, which interacts directly with the gamma-glutamate moiety of GSH (glutathione) as part of an electron-sharing network present in all soluble GSTs (glutathione transferases). Primary sequence alignment of all GST classes suggests that Glu64 is one of a few residues that is functionally conserved in the GST superfamily. Available crystal structures as well as consideration of the property of the equivalent residue at position 64, acidic or polar, suggest that the GST electron-sharing motif can be divided into two types. Electrostatic interaction between the GSH glutamyl and carboxylic Glu64, as well as with Arg66 and Asp100, was observed to extend the electron-sharing motif identified previously. Glu64 contributes to the catalytic function of this motif and the 'base-assisted deprotonation' that are essential for GSH ionization during catalysis. Moreover, this residue also appears to affect multiple steps in the enzyme catalytic strategy, including binding of GSH, nucleophilic attack by thiolate at the electrophilic centre and product formation, probably through active-site packing effects. Replacement with non-functionally-conserved amino acids alters initial packing or folding by favouring aggregation during heterologous expression. Thermodynamic and reactivation in vitro analysis indicated that Glu64 also contributes to the initial folding pathway and overall structural stability. Therefore Glu64 also appears to impact upon catalysis through roles in both initial folding and structural maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号