首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Chromosome landing near avirulence gene vH13 in the Hessian fly.   总被引:5,自引:0,他引:5  
AFLP markers in linkage disequilibrium with vH13, an avirulence gene in the Hessian fly (Mayetiola destructor) that conditions avirulence to resistance gene H13 in wheat (Triticum spp.), were discovered by bulked segregant analysis. Five AFLPs were converted into codominant site-specific markers that genetically mapped within 13 cM of this gene. Flanking markers used as probes positioned vH13 near the telomere of the short arm of Hessian fly chromosome X2. These results suggest that the X-linked avirulence genes vH6, vH9, and vH13 are present on Hessian fly chromosome X2 rather than on chromosome X1 as reported previously. Genetic complementation demonstrated that recessive alleles of vH13 were responsible for the H13-virulence observed in populations derived from four different states in the U.S.A.: Georgia, Maryland, Virginia, and Washington. Results support the hypothesis that a gene-for-gene interaction exists between wheat and Hessian fly.  相似文献   

2.
Resistance in wheat (Triticum aestivum) to the Hessian fly (Mayetiola destructor), a major insect pest of wheat, is based on a gene-for-gene interaction. Close linkage (3 +/- 2 cM) was discovered between Hessian fly avirulence genes vH3 and vH5. Bulked segregant analysis revealed two DNA markers (28-178 and 23-201) within 10 cM of these loci and only 3 +/- 2 cM apart. However, 28-178 was located in the middle of the short arm of Hessian fly chromosome A2 whereas 23-201 was located in the middle of the long arm of chromosome A2, suggesting the presence of severe recombination suppression over its proximal region. To further test that possibility, an AFLP-based genetic map of the Hessian fly genome was constructed. Fluorescence in situ hybridization of 20 markers on the genetic map to the polytene chromosomes of the Hessian fly indicated good correspondence between the linkage groups and the four Hessian fly chromosomes. The physically anchored genetic map is the first of any gall midge species. The proximal region of mitotic chromosome A2 makes up 30% of its length but corresponded to <3% of the chromosome A2 genetic map.  相似文献   

3.
The genotypic interaction between wheat resistance genes H3, H6, H7H8, H9 and virulence genes vH3, vH6, vH7vH8, vH9 of Hessian fly, Mayetiola destructor (Say), was studied in a growth chamber. Results showed that plants homozygous and heterozygous for the H3 gene expressed a high level of resistance against homozygous avirulent and heterozygous larvae carrying the vH3 virulence allele. The H7H8 genes were highly effective in the homozygous condition, but displayed a reduced level of resistance in the heterozygous condition. The H6 and H9 genes showed different levels of resistance against the reciprocal heterozygous larvae (vH6(a)vH6(A) versus vH6(A)vH6(a) and vH9(a)vH9(A) versus vH9(A)vH9(a)). Adults reared from vH6(a)vH6(A) and vH9(a)vH9(A) larvae were all males, consistent with the vH6 and vH9 X-linkage. Plants homozygous for H3, H6, H7H8, and H9 allowed for greater larval survival of heterozygous larvae, which suggests that avirulence to these resistance genes is incompletely dominant. Greater survival of homozygous avirulent larvae on heterozygous plants (H3h3, H6h6, H7h7H8h8, H9h9) suggests incomplete dominance of these wheat genes. Survival of heterozygous along with homozygous virulent larvae would reduce selection pressure for virulence in Hessian fly populations infesting fields of resistant wheat cultivars. This would be expected to slow the increase in frequency of virulence alleles that often results from deployment of resistant cultivars.  相似文献   

4.
The discovery of several new loci for resistance to Hessian fly was reported here. QHf.uga-6AL, the late HR61 was recognized from wheat cultivar 26R61 on the distal end of 6AL with resistance to both biotypes E and vH13. It is the first gene or QTL found on this particular chromosome. QHf.uga-3DL and QHf.uga-1AL, physically assigned to the deletion bins 3DL2-0.27–0.81 and 1AL1-0.17–0.61, respectively, were detected for resistance to biotype vH13. Both QTL should represent new loci for Hessian fly resistance and the latter was detectable only in the late seedling stage when tolerance was evident. In addition, QHf.uga-6DS-C and QHf.uga-1AS had minor effect and were identified from the susceptible parent AGS 2000 for resistance to biotype E and vH13, respectively. QHf.uga-6DS-C is different from the known gene H13 on 6DS and QHf.uga-1AS is different from H9 gene cluster on 1AS. These loci also might be new components of Hessian fly resistance, although their LOD values were not highly significant. The QTL detections were all conducted on a RIL mapping population of 26R61/AGS 2000 with good genome coverage of molecular markers. The strategy used in the current study will serve as a good starting point for the discovery and mapping of resistance genes including tolerance to the pest and the closely linked markers will certainly be useful in selecting or pyramiding of these loci in breeding programs.  相似文献   

5.
Two synthetic hexaploid wheat lines (×Aegilotriticum spp., 2n = 6x = 42, genomes AABBDD), SW8 and SW34, developed from the crosses of the durum wheat cultivar Langdon (Triticum turgidum L. var. durum, 2n = 4x = 28, genomes AABB) with two Aegilops tauschii Cosson accessions (2n = 2x = 14, genome DD), were determined to carry Hessian fly [Mayetiola destructor (Say)] resistance genes derived from the Ae. tauschii parents. SW8 was resistant to the Hessian fly biotype Great Plains (GP) and strain vH13 (virulent to H13). SW34 was resistant to biotype GP, but susceptible to strain vH13. Allelism tests indicated that resistance genes in SW8 and SW34 may be allelic to H26 and H13 or correspond to paralogs at both loci, respectively. H26 and H13 were localized to chromosome 4D and 6D, respectively, in previous studies. Molecular mapping in the present study, however, assigned the H26 locus to chromosome 3D rather than 4D. On the other hand, mapping of the resistance gene in SW34 verified the previous assignment of the H13 locus to chromosome 6D. Linkage analysis and physical mapping positioned the H26 locus to the chromosomal deletion bin 3DL3-0.81–1.00. A linkage map for each of these two resistance genes was constructed using simple sequence repeat (SSR) and target region amplification polymorphism (TRAP) markers.  相似文献   

6.
7.
Twenty-three Hessian fly, Mayetiola destructor (Say), populations collected in the southeastern (Alabama and Mississippi), midwestern (Indiana), and northwestern (Idaho and Washington) United States from 1995 to 1999 were evaluated for biotype composition based on response to Hessian fly resistance genes H3, H5, H6, and H7H8 in wheat, Triticum aestivum L. Biotypes L and O, combined, made up at least 60% of all Alabama populations. Biotype L was predominant in the northern third of Alabama and biotype O in the southern two-thirds of the state. Based on biotype data, wheat cultivars with H7H8 resistance should be highly effective in central and southern Alabama. Fifty-four percent of the Mississippi population consisted of biotype L, and the remaining virulent biotypes (B, D, E, G, J, and O) ranged in frequency from 1 to 17%. The Mississippi population also contained 4% of the avirulent biotype GP. Only biotypes D and L were found in Indiana populations, but biotype L was predominant. Hessian fly populations from Idaho and Washington contained one or more of the virulent biotypes D-H, J, and L-O; however, only biotypes E, F, and G occurred at frequencies > 12%. The avirulent biotype GP made up 25-57% of Idaho and Washington populations, a much higher percentage than found in populations from the eastern United States. Although the highest level of virulence in Idaho and Washington populations was found to resistance genes H3 and H6, the frequency of biotype GP would indicate that the currently deployed gene H3 would provide a moderate to high level of resistance, depending on location. Nine of the populations, plus populations collected from the mid-Atlantic state area in 1989 and 1996, also were tested against the wheat cultivar 'INW9811' that carries H13 resistance to Hessian fly biotype L and two Purdue wheat lines with unidentified genes for resistance. The H13 resistance in INW9811 was highly effective against all populations tested from the eastern and northwestern U.S. wheat production areas, except Maryland and Virginia. Population studies also indicated that wheat line CI 17960-1-1-2-4-2-10 likely carries the H13 resistance gene, based on the similarity of its response and that of INW9811 to eight fly populations. Continued monitoring of biotype frequency in Hessian fly populations is required for optimal deployment and management of resistance genes in all wheat production areas.  相似文献   

8.
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly (Hf)-resistance genes H16 and H17 were reported to condition resistance to Hf biotype L that is prevalent in many wheat-growing areas of eastern USA, and both of them were previously assigned to wheat chromosome 5A by their linkage to H9. The objectives in this study were to (1) map H16 and H17 independent of their linkage with H9 and (2) identify DNA markers that co-segregate with H16 or H17, and that are useful for selection of these genes in segregating populations and to combine these genes with other Hf-resistance genes in wheat cultivars. Contrary to previously reported locations, H16 and H17 did not show linkage with the molecular markers on chromosome 5A. Instead, both of them are linked with the molecular markers on the short arm of chromosome 1A (1AS). The simple sequence repeat (SSR) marker Xpsp2999 and EST-derived SSR (eSSR) marker Xwem6b are two flanking markers that are linked to H16 at genetic distances of 3.7 and 5.5 cM, respectively. Similarly, H17 is located between markers Xpsp2999 and Xwem6b at genetic distances of 6.2 and 5.1 cM, respectively. Five other SSR and eSSR markers including Xcfa2153, Xbarc263, Xwem3a, Xwmc329, and Xwmc24 were also linked to H16 and H17 at close genetic distances. These closely linked molecular markers should be useful for pyramiding H16 and H17 with other Hessian fly resistance genes in a single wheat genotype. In addition, using Chinese Spring deletion line bin mapping we positioned all of the linked markers and the Hf-resistance genes (H16 and H17) to the distal 14% of chromosome 1AS, where Hf-resistance genes H9, H10, and H11 are located. Our results together with previous studies suggest that Hf-resistance genes H9, H10, H11, H16, and H17 along with the pathogen resistance genes Pm3 and Lr10 appear to occupy a resistance gene cluster in the distal region of chromosome 1AS in wheat. Contribution from Purdue Univ. Agric. Res. Programs Journal Article No. 2007-18105.  相似文献   

9.
Identification of RAPD markers for 11 Hessian fly resistance genes in wheat   总被引:7,自引:0,他引:7  
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement. Received: 20 March 1996 / Accepted: 6 September 1996  相似文献   

10.
H9, H10, and H11 are major dominant resistance genes in wheat, expressing antibiosis against Hessian fly [(Hf) Mayetiola destructor (Say)] larvae. Previously, H9 and H10 were assigned to chromosome 5A and H11 to 1A. The objectives of this study were to identify simple-sequence-repeat (SSR) markers for fine mapping of these genes and for marker-assisted selection in wheat breeding. Contrary to previous results, H9 and H10 did not show linkage with SSR markers on chromosome 5A. Instead, H9, H10, and H11 are linked with SSR markers on the short arm of chromosome 1A. Both H9 and H10 are tightly linked to flanking markers Xbarc263 and Xcfa2153 within a genetic distance of 0.3–0.5 cM. H11 is tightly linked to flanking markers Xcfa2153 and Xbarc263 at genetic distances of 0.3 cM and 1.7 cM. Deletion bin mapping assigned these markers and genes to the distal 14% of chromosome arm 1AS, where another Hf-resistance gene, Hdic (derived from emmer wheat), was also mapped previously. Marker polymorphism results indicated that a small terminal segment of chromosome 1AS containing H9 or H10 was transferred from the donor parent to the wheat lines Iris or Joy, and a small intercalary fragment carrying H11 was transferred from the resistant donor to the wheat line Karen. Our results suggest that H9, H10, H11, Hdic, and the previously identified H9- or H11-linked genes (H3, H5, H6, H12, H14, H15, H16, H17, H19, H28, and H29) may compose a cluster (or family) of Hf-resistance genes in the distal gene-rich region of wheat chromosome 1AS; and H10 most likely is the same gene as H9.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

11.
A three years survey and monitoring studies (2013–2014–2015) were carried out through 4 regions of north Tunisia in order to follow the evolution of the distribution, the frequency of occurrence and damage caused by the Hessian fly Mayetiola destructor (Say) to bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf). Moreover, the effectiveness of resistance genes H3, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H22, H23, H25 and H26 to protect wheat from Hessian fly attack was assessed in natural field and under controlled laboratory conditions at INRAT-Kef Station. Results showed that Hessian fly was detected in 60.33% and 51.5% of all sampled durum and bread wheat fields, respectively. This pest was more frequent with a higher percentage of infestation in semi-arid regions. Indeed, during 2013, infestation rate attained 12.39% in Kef region against 0.9% registered in Bizerte region. In order to update information about the annual number of generations, we surveyed the population dynamic of Hessian fly in Kef region. Three generations of the fly were counted annually on wheat, with two complete and one incomplete generation. This insect affects host plant growth at different developmental stages. Plant height was the most affected parameter followed by shoot dry weight and tiller number. Field investigations on host resistance revealed that among the 16 tested resistance genes, and only three were strictly effective (H22, H25 and H26). The resistance genes H5, H9, H13 and H9H13 have also conferred high levels of protection against Hessian fly. This work indicated that H22, H25 and H26 genes could be incorporated into Tunisian wheat varieties and released to farmers to manage the threat due to Hessian fly attacks.  相似文献   

12.
Resistance genes (R genes) are an important part of the plant's immune system. Among insects, the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), larva is the target of the greatest number of characterized R genes (H1-H32). The biochemical/molecular mechanism of R gene resistance to Hessian fly is not well understood. In the absence of an effective R gene, larvae caused extensive growth deficits (> 30 cm) in wheat seedlings. In the presence of one of three effective R genes, H6, H9, or H13, larvae caused small growth deficits (approximately 3-4 cm) in two leaves (third and fourth) that were actively growing during the first days of larval attack. After larvae died on R gene plants, the fifth leaf and tiller leaves exhibited small increases in growth (2-4 cm). Growth responses of susceptible and resistant plants diverged at a time when Hessian fly larvae were establishing a nutritive gall tissue at feeding sites. The results of this study support the hypothesis that R gene resistance cannot prevent initial larval attack, but, by stopping the formation of the larval gall, it prevents the most serious consequences of larval attack.  相似文献   

13.
Human gene mapping using an X/autosome translocation.   总被引:1,自引:0,他引:1  
Human fibroblasts containing a translocation between the X chromosome and chromosome 15 were fused with the 6-thioguanine-resistant mouse cell line, IR. Resulting hybrids, selected in HAT medium, retained the X/15 chromosome. Hybrids which were counterselected in 6-thioguanine lost this chromosome. The X-linked markers glucose-6-phosphate dehydrogenase (G6PD), phosphoglycerate kinase (PGK), and hypoxanthine phosphoribosyl transferase (HPRT), and the non-X-linked markers pyruvate kinase (PKM2) mannose phosphate isomerase (MPI), N-acetyl hexosaminidase A (HEXA) and beta2-microglubulin (beta2-m) all segregated in concordance with the X/15 translocation chromosome. The latter markers have been assigned to chromosome 15. Selection against the X/15 chromosome was done using antihuman beta2-m serum. Electrophoretic and immunochemical analyses of the N-acetyl hexosaminidases A and B in these hybrids were performed.  相似文献   

14.
In Tunisia, the Hessian fly Mayetiola destructor Say is a major pest of durum wheat (Triticum durum Desf.) and bread wheat (T. aestivum L.). Genetic resistance is the most efficient and economical method of control of this pest. To date, 31 resistance genes, designated H1-H31, have been identified in wheat. These genes condition resistance to the insect genes responsible for virulence. Using wheat cultivars differing for the presence of an individual Hessian fly resistance gene and random amplified polymorphic DNA (RAPD) analysis, we have identified a polymorphic 386-bp DNA marker (Xgmib1-1A.1) associated with the H11 Hessian fly resistance gene. Blast analysis showed a high identity with a short region in the wild wheat (T. monococcum) genome, adjacent to the leaf rust resistance Lr10 gene. A genetic linkage was reported between this gene (Lr10) and Hessian fly response in wheat. These data were used for screening Hessian fly resistance in Tunisian wheat germplasm. Xgmib1-1A.1-like fragments were detected in four Tunisian durum and bread wheat varieties. Using these varieties in Hessian fly breeding programs in Tunisia would be of benefit in reducing the damage caused by this fly.  相似文献   

15.
16.
17.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

18.
Hessian fly, Mayetiola destructor (Say), is the most important insect pest of wheat in Morocco, where host plant resistance has been used successfully for control. Our objective was to determine the frequency of Hessian fly virulence on H5, H13 and H22 resistance genes. Five Hessian fly populations from the principal cereal‐growing regions in Morocco were studied. The variability in percentage of susceptible plants across Hessian fly populations was highly significant (P < 0.01), indicating differences in virulence frequencies. Plants with the H13 gene had the lowest percentage of susceptible plants, 1.77 and 1.51%, when infested with Hessian flies from Fes and Marchouch, respectively. A low level of virulence to H22 was detected in Fes, Abda and Marchouch populations, 1.87, 1.54 and 1.99% susceptible plants, respectively. The level of virulence to H5 was low in all the five populations. The Beni Mellal population gave the highest percentage of susceptible plants carrying H13 and H22 genes, 6.43 and 7.28%, respectively. The size of live larvae on susceptible plants of the three cultivars carrying H5, H13 and H22 was similar to that of the susceptible check, indicating that a true virulence (biotype) is developing in Hessian fly populations in Morocco. Thus, continuous monitoring of the development of Hessian fly biotypes is essential for optimal deployment of resistance genes.  相似文献   

19.
A medium density microsatellite map of BTA10: reassignment of INRA69   总被引:1,自引:0,他引:1  
We have developed a genetic map of BTA10 based on 8952 informative meioses for 13 microsatellite markers and the erythrocyte antigen Z. With the exception of OarAE64 , the support for the order of all loci in the map exceeded a LOD > 3·0. The length of the BTA10 genetic map was 87·0 centimorgans (cM). The 14-marker, sex-average map in Kosambi cM was: CSSM38 –8·9- BM1237 –5·2- HH8A –2·6- INRA69 –10·6- TGLA378 –0·8- BM6305 –17·2- TGLA102 –17·9- INRA96 –0·3- CSRM60 –9·2- DIK20 –3·0- EAZ –6·7- CSSM46 –3·7- SRCRSP3 –1·0- OarAE64 with an average interval of 6·70 cM. The microsatellite INRA69 was recently assigned to the pseudoautosomal region of the bovine X chromosome by linkage analysis. However, we found that twopoint support for linkage between INRA69 and 15 X-linked bovine microsatellites was LOD < 0·50 in 529 reciprocal backcross and F2 fullsib progeny. We performed twopoint analyses of INRA69 against 275 markers distributed throughout the bovine genome and found significant associations with a LOD > 3·0 only between INRA69 and eight BTA10 microsatellite loci. Consequently, we excluded INRA69 from the genetic map of the X chromosome and reassign this microsatellite to BTA10.  相似文献   

20.
Genetic resistance in wheat, Triticum aestivum L., is the most efficacious method for control of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). However, because of the appearance of new genotypes (biotypes) in response to deployment of resistance, field collections of Hessian fly need to be evaluated on a regular basis to provide breeders and producers information on the efficacy of resistance (R) genes with respect to the genotype composition of Hessian fly in regional areas. We report here on the efficacy of 21 R genes in wheat to field collections of Hessian fly from the southeastern United States. Results documented that of the 21 R genes evaluated only five would provide effective protection of wheat from Hessian fly in the southeastern United States. These genes were H12, H18, H24, H25, and H26. Although not all of the 33 identified R genes were evaluated in the current study, these results indicate that identified genetic resistance to protect wheat from Hessian attack in the southeastern United States is a limited resource. Historically, R genes for Hessian fly resistance in wheat have been deployed as single gene releases. Although this strategy has been successful in the past, we recommend that in the future deployment of combinations of highly effective previously undeployed genes, such as H24 and H26, be considered. Our study also highlights the need to identify new and effective sources of resistance in wheat to Hessian fly if genetic resistance is to continue as a viable option for protection of wheat in the southeastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号