首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Mechanical forces active on steep slopes tend to overturn plants, which respond by developing a specific asymmetrical architecture in the root system. This asymmetric architecture is the consequence of preferential lateral root emergence and elongation in the up-slope and down-slope directions. Root systems show a normal symmetrical architecture when the same species is grown on plane soil. The asymmetrical root architecture on steep slopes seems to increase the plant's stability by modifying the distribution of mechanical forces into the soil. This hypothesis is supported by the observation that lateral roots developing in the up-slope or down-slope directions present considerable anatomical modifications in shape and tissue-organization compared with lateral roots from plants growing on plane soil.  相似文献   

2.
Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.  相似文献   

3.
Abstract

This paper investigates the modification of root architecture of Spartium junceum L. seedlings grown in slope condition. It is reported that 50% of the total number of lateral roots are concentrated in few centimetres of the taproot near the collar. The anatomical analysis of transverse sections along the taproot axis reveals that this taproot zone is characterised by two types of lateral roots: one with a trace extending to the centre of the vascular cylinder by following the path of a medullar ray; one with a trace which ends in the vascular cambium. The first type may be lateral roots originated from the taproot primary structure; the second type seems to be lateral roots developing later when a secondary structure has completely substituted the primary structure. The emission of this second type of lateral roots seems to be strongly controlled by environmental conditions with considerable consequences upon the overall root architecture. In the example reported in this paper, young plants growing under mechanical stress due to a slope develop asymmetric root architecture with lateral roots elongating in two prevalent directions: up-slope or down-slope. This asymmetric architecture is produced in the zone of the taproot where a secondary structure is present and represents the plant response to the need of increasing its anchorage strength.  相似文献   

4.
BACKGROUND AND AIMS: Plant roots' growth direction has important implications for plant development and survival; moreover it plays an effective and vital role in stabilizing weathered soil on a steep slope. The aim of this work was to assess the influence of slope on the architecture of woody root systems. METHODS: Five mature, single-stemmed Quercus pubescens trees growing on a steep slope and five on a shallow slope were excavated to a root diameter of 1 cm. A very precise numeric representation of the geometry and topology of structural root architecture was gained using a low-magnetic-field digitizing device (Fastrak, Polhemus). Several characteristics of root architecture were extracted by macros, including root volume, diameter, length, number, spatial position and branching order. KEY RESULTS: The diameter at breast height (dbh) was the best predictor of the root volume but had no correlation with length and number of roots. The slope affected the root volume for each branching order, and the basal cross-sectional area (CSA), number and length of the first-order roots. Number and length of the second- and third-order laterals were closely related in both conditions, although this relationship was closer in the shallow trees, suggesting the influence of a genetic control. Sloping trees showed a clustering tendency of the first- and second-order lateral roots in the up-slope direction, suggesting that the laterals rather than the taproots provide much of the anchorage. In a steep-slope condition, the taproot tapering was positively correlated with the asymmetry magnitude of first-order roots, indicating compensation between taproot and main lateral roots' clustering tendency. CONCLUSIONS: These results suggest that on a slope, on clayey soils, root asymmetry appears to be a consequence of several environmental factors such as inclination, shallow-slides and soil compactness. In addition, this adaptive growth seems to counteract the turning moment induced by the self-loading forces acting in slope conditions, and as a consequence improves the tree stability.  相似文献   

5.
李金波  伍红燕  赵斌  陈济丁  宋桂龙 《生态学报》2023,43(24):10131-10141
植物根系对提高边坡稳定性具有重要作用。采用喷播的方式在侵蚀槽中制备模拟石质边坡,植物生长6个月后采用全根挖掘和Win-RHIZO根系分析仪扫描相结合的方法,研究了模拟边坡条件下11种常见护坡植物苗期的根系构型特征。结果表明:紫花苜蓿根系生物量最大,柠条根系生物量最小,二者主根发达,仅分布在下坡方向。沙打旺、胡枝子、紫穗槐和欧李根系生物量、总根数、总基根数、总根长、总根表面积、总根体积均较大,在上坡方向和下坡方向分布均匀,拓扑指数介于0.53—0.61之间,为叉状分枝结构,根系固土护坡能力较强,可作为边坡生态修复工程的优选植物。根系生物量与根系表面积、根体积呈现显著的线性正相关关系(R2分别为0.68和0.80),拓扑指数与根系长度、根系表面积、总根数、总基根数呈现显著的指数负相关关系(R2分别为0.82、0.68、0.87、0.86),可为植物根系构型研究提供科学依据及理论支撑。  相似文献   

6.
Nutrients are distributed unevenly in the soil.Phenotypic plasticity in root growth and proliferation may enable plants to cope with this variation and effectively forage for essential nutrients. However, how micronutrients shape root architecture of plants in their natural environments is poorly understood. We used a combination of field and laboratory-based assays to determine the capacity of Nicotiana attenuata to direct root growth towards localized nutrient patches in its native environment. Plants growing in nature displayed a particular root phenotype consisting of a single primary root and a few long, shallow lateral roots. Analysis of bulk soil surrounding the lateral roots revealed a strong positive correlation between lateral root placement and micronutrient gradients, including copper, iron and zinc. In laboratory assays, the application of localized micronutrient salts close to lateral root tips led to roots bending in the direction of copper and iron. This form of chemotropism was absent in ethylene and jasmonic acid deficient lines,suggesting that it is controlled in part by these two hormones. This work demonstrates that directed root growth underlies foraging behavior, and suggests that chemotropism and micronutrient-guided root placement are important factors that shape root architecture in nature.  相似文献   

7.
Our knowledge of the root system architecture of trees is still incomplete, especially concerning how biomass partitioning is regulated to achieve an optimal, but often unequal, distribution of resources. In addition, our comprehension of root system architecture development as a result of the adaptation process is limited because most studies lack a temporal approach. To add to our understanding, we excavated 32-year-old Pinus ponderosa trees from a steep, forested site in northern Idaho USA. The root systems were discretized by a low magnetic field digitizer and along with AMAPmod software we examined their root traits (i.e. order category, topology, growth direction length, and volume) in four quadrants: downslope, upslope, windward, and leeward. On one tree, we analyzed tree rings to compare the ages of lateral roots relative to their parental root, and to assess the occurrence of compression wood. We found that, from their onset, first-order lateral roots have similar patterns of ring eccentricity suggesting an innate ability to respond to different mechanical forces; more root system was allocated downslope and to the windward quadrant. In addition, we noted that shallow roots, which all presented compression wood, appear to be the most important component of anchorage. Finally, we observed that lateral roots can change growth direction in response to mechanical forces, as well as produce new lateral roots at any development stage and wherever along their axis. These findings suggest that trees adjust their root spatial deployment in response to environmental conditions, these roots form compression wood to dissipate mechanical forces, and new lateral roots can arise anywhere and at any time on the existing system in apparent response to mechanical forces.  相似文献   

8.
This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.  相似文献   

9.
Vegetation Succession and its Consequences for Slope Stability in SE Spain   总被引:4,自引:1,他引:3  
The effect of land abandonment as a result of changing land-use policies is becoming more and more important throughout Europe. In this case study, the role of vegetation succession and landslide activity on steep abandoned slopes was investigated. The influence of vegetation succession on soil properties over time, as well as how developing root systems affect soil reinforcement was determined. The study was carried out in the Alcoy basin in SE Spain, where the marl substratum is prone to landsliding along steep ravines. The bench-terraced slopes have been abandoned progressively over the last 50 years and show various stages of revegetation. The study was carried out at two scales; at the catchment scale long-term evolution of land-use, vegetation succession and slope failure processes were investigated. At a more detailed scale, vegetation cover, soil properties and rooting effects on soil strength were determined. Results showed that the soil has changed over a period of 50 years with respect to soil properties, vegetation cover and rooting, which is reflected in the activity of geomorphological processes. Vegetation succession progressively limits surface processes (sheet wash and concentrated overland flow) over time, whereas slopes affected by mass wasting processes increase in number. The spatial heterogeneity of infiltration increases over time, leading to increased macro-pore flow towards the regolith zone, enhancing the potential risk of fast wetting of the regolith directly above the potential plane of failure, as was concluded from rainfall simulations. In situ experiments to determine soil shear strength in relation to rooting indicated that roots contributed to soil strength, but only in the upper 0.4 m of the soil. Most failures however, occur at greater depths (1.0–1.2 m) as anchorage by deeper roots was not effective or absent. The observed initial increase in mass wasting processes after land abandonment can therefore be explained in two ways: (1) the limited contribution of anchorage by root systems at potential slip planes which cannot counterbalance the initial decline of the terrace walls, and (2) the fast transfer of rainfall to the potential slip plane by macro-pores enhancing mass movements. However, after approximately 40 years of abandonment, mass wasting processes decline.  相似文献   

10.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

11.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

12.
We investigated belowground responses of Nothofagus alpina seedlings to post-fire conditions during natural regeneration after a wildfire in Chile, focusing on mycorrhizal community and root architecture. The complete root systems of 2-year-old N. alpina seedlings were extracted from a post-fire site with natural regeneration and compared to roots of seedlings from undisturbed forest nearby. Mycorrhizal morphotype richness was determined in each seedling. Morphometric parameters of tertiary root structure and dry biomass of whole root systems were determined in 5 cm vertical intervals and in four lateral root classes. With 43.5% of colonized vital mycorrhizal root tips, the Basidiomycete Descolea antarctica was the most abundant fungal symbiont on post-fire seedlings. Tertiary root morphology of these seedlings was distinct from control plants and characterized by a deep-reaching tap root with rather evenly distributed lateral branches whereas seedlings from the undisturbed site had shallower root systems with most lateral roots concentrated in the upper soil layers. Post-fire seedlings had more mycorrhizal rootlets and mycorrhiza-bearing third order lateral roots than control plants which was expressed in a 34% higher total root number but only a 10% higher total root biomass, although both values were not statistically significant. A major part of these fine roots in seedlings from burnt forest was found in deeper soil horizons, compared to the seedlings from undisturbed forest. According to our results, post-fire conditions clearly favour Descolea antarctica as an early ectomycorrhizal colonizer of Nothofagus seedlings at the studied site. As no significant changes in soil chemistry could be observed at the burnt site, the deep-reaching tertiary root architecture of these seedlings may be interpreted as a response to other abiotic factors like reduced moisture in surface soil.  相似文献   

13.

Background

Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources.

Scope

This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots.

Conclusions

The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.  相似文献   

14.
15.
Root development of ‘Red Lady’ papaya plants grown on a hillside   总被引:1,自引:0,他引:1  
Red Lady papaya (Carica papaya L.) seedlings were grown for 7 weeks in one experiment and 17 weeks in a second experiment on a 60% to 70% sloped hillside. Depth and lateral root developmental characteristics were determined to establish a more informed basis for developing management procedures during hillside production of papaya. A trench was dug perpendicular to the contour line, and positioned 10 cm from the stem base of each plant. A 1 cm layer of soil was removed from the profile wall, and the roots on the trench profile were mapped. Thereafter, the intact half of each root system was excavated to determine the dry mass and length distribution. Roots were separated into the taproot system, and the lateral roots of the uphill and downhill sides. The downhill portion of lateral roots accounted for 56% of total length and 64% of total mass after 7 weeks, and 71% of total length and 69% of total mass after 17 weeks. Some lateral roots on the uphill side of the plants developed with a negative gravitropic orientation to maintain a portion of the root system, close to the surface of the slope. After 17 weeks, 34% of the roots on the uphill side of the trench profile walls were located above a horizontal plane positioned at the stem base. Root growth of Red Lady papaya plants growing on hillsides was maintained in all directions, including up the slope. The results signify that there may be no need to modify fertilizer placement practices for hillside production of papaya. However, the higher concentration of roots on the downhill side of these plants indicates a need for placement of soil moisture sensors for irrigation scheduling in uphill and downhill sites.  相似文献   

16.
Vegetative propagation and dispersal were studied in attached and detached increase bulblets of Allium neapolitanum. The bulblets were sown in 3 positions (upright, horizontal, and inverted) at various depths, and the directions of the contractile roots and movement in the soil were calculated. A thick contractile root develops spontaneously from the base of the bulblet, irrespective of planting level, even at normal depth. The root is ageotropic and its direction is chiefly determined by the bulblet position. It generally develops at a plane perpendicular to the longitudinal axis of the bulblet. Thus, in upright and inverted bulblets, the root is horizontal, while in horizontal ones it may grow in various directions but always on the plane perpendicular to the axis of the bulblet. Depth has a marked effect on the direction of the contractile roots, diverting them from their original route (upwards in deep-seated plants and downwards in shallow ones). Thus, the vegetative dispersal of Allium neapolitanum is tridimensional, within definite soil levels.  相似文献   

17.
This paper aims to investigate the effect of the root architecture on the shear strength increment provided by plant roots in the soil. In situ shear tests were conducted for this purpose. Five plant species – Hibiscus tiliaceus L. (Linden hibiscus), Mallotus japonicus (Thunb.) Muell.-Arg. (Japanese Mallotus), Sapium sebiferum (L.) Roxb. (Chinese tallow tree), Casuarina equisetifolia L. (ironwood), and Leucaena leucocephala (Lam.) (white popinac) – were used in this study. Tensile tests on roots of various diameters and surveys on the root system structure were carried out for each of the plant species tested. The shear strength increments (ΔS) provided by the roots of Linden hibiscus, Japanese Mallotus, Chinese tallow tree, ironwood, and white popinac were 0.34tR, 0.462tR, 0.688tR, 0.3tR, and 0.87tR, respectively, when tR was estimated on the basis of the tensile root strength crossing through the shear plane. The shear strength increment provided by plant roots with conspicuous oblique and vertical roots was greater than that of root structures in which lateral roots were dominant. In comparison with other types of root architecture, the R-type root architecture was found to be the most effective root system against shear failure in the soil. Its shear strength increment was slightly greater than that with the V-type root architecture, followed by the VH-type root architecture. The shear strength increment provided by plants with the H-type root architecture was less effective than that contributed by plant species with other types of root architecture.  相似文献   

18.
On the search for sparingly available nutrients, plants may alter their root architecture to improve soil exploration. So far, the examples for root system modifications induced by a heterogeneous availability of nutrients have been reported for the macronutrients nitrogen (N) and phosphorous (P). In an attempt to extend this type of knowledge to other nutrients, we recently provided evidence that Arabidopsis roots are able to sense a local availability of the micronutrient iron (Fe) and to respond with lateral root elongation into the Fe-containing patch. This specific root response was caused by enhanced elongation of cells leaving the root meristem and was dependent on an AUX1-mediated auxin accumulation in the lateral root apices. In this report, we compare mechanisms underlying this response with those known for other nutrients and show that a substantial genotypic variation exists among accessions of A. thaliana in the responsiveness of lateral roots toward localized Fe supplies.  相似文献   

19.
Is it possible to manipulate root anchorage in young trees?   总被引:1,自引:1,他引:0  
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (?) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, E L ) determined. In seedlings (?) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (?) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (?) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (?) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R 2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R 2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and E L did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. E L was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.  相似文献   

20.
Root architecture is of key importance for plant nutrition and performance. It is known that root architecture is determined by genetics and environmental conditions. The aim of the present study was to evaluate if root exudation within a given plant has a role in the development of root architecture. We conducted a series of experiments using Arabidopsis thaliana Ler and Col grown with and without activated charcoal (AC). The addition of AC lowered the concentration of secondary metabolites in the growth media by more than 90%. Our results consistently showed that the addition of AC significantly decreased the number of lateral roots (38% in Ler and 27% in Col), but this decrease was compensated by an increase in the root length per unit of lateral root (83% in Ler and 96% in Col). This compensation resulted in a non-significant effect of AC on the total length of lateral roots. The effects of AC on root architecture were partially or totally reverted by the differential supplementation of root exudates from other plants of the same ecotype. Our results indicate a direct role of secondary metabolites present in the root exudates in the development of root architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号