首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast nuclear gene ATP4, encoding the ATP synthase subunit 4, was disrupted by insertion into the middle of it the selective marker URA3. Transformation of the Saccharomyces cerevisiae strain D273-10B/A/U produced a mutant unable to grow on glycerol medium. The ATP4 gene is unique since subunit 4 was not present in mutant mitochondria; the hypothetical truncated subunit 4 was never detected. ATPase was rendered oligomycin-insensitive and the F1 sector of this mutant appeared loosely bound to the membrane. Analysis of mitochondrially translated hydrophobic subunits of F0 revealed that subunits 8 and 9 were present, unlike subunit 6. This indicated a structural relationship between subunits 4 and 6 during biogenesis of F0. It therefore appears that subunit 4 (also called subunit b in beef heart and Escherichia coli ATP synthases) plays at least a structural role in the assembly of the whole complex. Disruption of the ATP4 gene also had a dramatic effect on the assembly of other mitochondrial complexes. Thus, the cytochrome oxidase activity of the mutant strain was about five times lower than that of the wild type. In addition, a high percentage of spontaneous rho- mutants was detected.  相似文献   

2.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

3.
In the present study we have identified a new metalloprotease encoded by the nuclear ATP23 gene of Saccharomyces cerevisiae that is essential for expression of mitochondrial ATPase (F(1)-F(O) complex). Mutations in ATP23 cause the accumulation of the precursor form of subunit 6 and prevent assembly of F(O). Atp23p is associated with the mitochondrial inner membrane and is conserved from yeast to humans. A mutant harboring proteolytically inactive Atp23p accumulates the subunit 6 precursor but is nonetheless able to assemble a functional ATPase complex. These results indicate that removal of the subunit 6 presequence is not an essential event for ATPase biogenesis and that Atp23p, in addition to its processing activity, must provide another important function in F(O) assembly. The product of the yeast ATP10 gene was previously shown to interact with subunit 6 and to be required for its association with the subunit 9 ring. In this study one extra copy of ATP23 was found to be an effective suppressor of an atp10 null mutant, suggesting an overlap in the functions of Atp23p and Atp10p. Atp23p may, therefore, also be a chaperone, which in conjunction with Atp10p mediates the association of subunit 6 with the subunit 9 ring.  相似文献   

4.
The F(0)F(1)-ATPase complex of yeast mitochondria contains three mitochondrial and at least 17 nuclear gene products. The coordinate assembly of mitochondrial and cytosolic translation products relies on chaperones and specific factors that stabilize the pools of some unassembled subunits. Atp10p was identified as a mitochondrial inner membrane component necessary for the biogenesis of the hydrophobic F(0) sector of the ATPase. Here we show that, following its synthesis on mitochondrial ribosomes, subunit 6 of the ATPase (Atp6p) can be cross-linked to Atp10p. This interaction is required for the integration of Atp6p into a partially assembled subcomplex of the ATPase. Pulse labeling and chase of mitochondrial translation products in vivo indicate that Atp6p is less stable and more rapidly degraded in an atp10 null mutant than in wild type. Based on these observations, we propose Atp10p to be an Atp6p-specific chaperone that facilitates the incorporation of Atp6p into an intermediate subcomplex of ATPase subunits.  相似文献   

5.
Mutants of Saccharomyces cerevisiae carrying defined lesions in the mitochondrial aap1 gene, coding for membrane subunit 8 of the H+-ATPase, have been investigated to examine the consequence of the mutations on the function and assembly of the enzyme complex. These include three mit- mutants, which cannot grow by oxidative metabolism due to their inability to synthesize full-length subunit 8, and three partial revertants of one of the mutants. The mutations in these strains have been previously characterized by DNA sequencing. The use of a monoclonal antibody to the beta subunit of the H+-ATPase as a probe of assembly defect revealed that the presence of subunit 8 is essential for the assembly of subunit 6 to the enzyme complex. Mitochondria isolated from the mit- mutants have negligible [32Pi]ATP exchange activity and they exhibited ATPase activity which is not sensitive to inhibition by oligomycin, indicating a defective membrane F0 sector. Normal assembly of subunit 8 (and subunit 6) was observed in the revertant strains, despite 8-9 amino-acid substitutions in the membrane-spanning region of the H+-ATPase subunit 8 in two of the strains. The assembled complex, however, exhibited reduced [32Pi]ATP exchange activity and low sensitivity to oligomycin, indicating that the product of the aap1 gene is a functional subunit of the mitochondrial H+-ATPase.  相似文献   

6.
In an earlier study, the ATP10 gene of Saccharomyces cerevisiae was shown to code for an inner membrane protein required for assembly of the F(0) sector of the mitochondrial ATPase complex (Ackerman, S., and Tzagoloff, A. (1990) J. Biol. Chem. 265, 9952-9959). To gain additional insights into the function of Atp10p, we have analyzed a revertant of an atp10 null mutant that displays partial recovery of oligomycin-sensitive ATPase and of respiratory competence. The suppressor mutation in the revertant has been mapped to the OLI2 locus in mitochondrial DNA and shown to be a single base change in the C-terminal coding region of the gene. The mutation results in the substitution of a valine for an alanine at residue 249 of subunit 6 of the ATPase. The ability of the subunit 6 mutation to compensate for the absence of Atp10p implies a functional interaction between the two proteins. Such an interaction is consistent with evidence indicating that the C-terminal region with the site of the mutation and the extramembrane domain of Atp10p are both on the matrix side of the inner membrane. Subunit 6 has been purified from the parental wild type strain, from the atp10 null mutant, and from the revertant. The N-terminal sequences of the three proteins indicated that they all start at Ser(11), the normal processing site of the subunit 6 precursor. Mass spectral analysis of the wild type and mutants subunit 6 failed to reveal any substantive difference of the wild type and mutant proteins when the mass of the latter was corrected for Ala --> Val mutation. These data argue against a role of Atp10p in post-translational modification of subunit 6. Although post-translational modification of another ATPase subunit interacting with subunit 6 cannot be excluded, a more likely function for Atp10p is that it acts as a subunit 6 chaperone during F(0) assembly.  相似文献   

7.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

8.
Atp6p (subunit 6) of the Saccharomyces cerevisiae mitochondrial ATPase is synthesized with an N-terminal 10-amino acid presequence that is cleaved during assembly of the complex. This study has examined the role of the Atp6p presequence in the function and assembly of the ATPase complex. Two mutants were constructed in which the codons for amino acids 2-9 or 2-10 of the Atp6p precursor were deleted from the mitochondrial ATP6 gene. The concentration of Atp6p and ATPase complex was approximately 2 times less in the mutants. The lower concentration of ATPase complex in the leaderless mutants correlated with less Atp6p complexed with the Atp9p ring of the F0 sector and with accumulation of an Atp6p-Atp8p complex that aggregated into polymers destined for eventual proteolytic elimination. We propose that the presequence either targets Atp6p to the Atp9p or signals insertion of the Atp6p precursor into a microcompartment of the membrane for more efficient interaction with the Atp9p ring. Despite the ATPase deficiency, growth of the leaderless atp6 mutants on respiratory substrates and the efficiency of oxidative phosphorylation were similar to that of wild type, indicating that the mutations did not affect the proton permeability of mitochondria.  相似文献   

9.
This study concerns the assembly into a multisubunit enzyme complex of a small hydrophobic protein imported into isolated mitochondria. Subunit 8 of yeast mitochondrial ATPase (normally a mitochondrial gene product) was expressed in vitro as a chimaeric precursor N9L/Y8-1, which includes an N-terminal-cleavable transit peptide to direct its import into mitochondria. Assembly into the enzyme complex of the imported subunit 8 was monitored by immunoadsorption using an immobilized anti-F1-beta monoclonal antibody. Preliminary experiments showed that N9L/Y8-1 imported into normal rho+ mitochondria, with its complement of fully assembled ATPase, did not lead to an appreciable assembly of the exogenous subunit 8. With the expectation that mitochondria previously depleted of subunit 8 could allow such assembly in vitro, target mitochondria were prepared from genetically modified yeast cells in which synthesis of subunit 8 was specifically blocked. Initially, mitochondria were prepared from strain M31, a mit- mutant completely incapable of intramitochondrial biosynthesis of subunit 8. These mit- mitochondria however were unsuitable for assembly studies because they could not import protein in vitro. A controlled depletion strategy was then evolved. An artificial nuclear gene encoding N9L/Y8-1 was brought under the control of a inducible promoter GAL1. This regulated gene construct, in a low copy number yeast expression vector, was introduced into strain M31 to generate strain YGL-1. Galactose control of the expression of N9L/Y8-1 was demonstrated by the ability of strain YGL-1 to grow vigorously on galactose as a carbon source, and by the inability to utilize ethanol alone for prolonged periods of growth. The measurement of bioenergetic parameters in mitochondria from YGL-1 cells experimentally depleted of subunit 8, by transferring growing cells from galactose to ethanol, was consistent with the presence in mitochondria of a mosaic of ATPase, namely fully assembled functional ATPase complexes and partially assembled complexes with defective F0 sectors. These mitochondria demonstrated very efficient import of N9L/Y8-1 and readily incorporated the imported processed subunit 8 protein into ATPase. Comparison of the kinetics of import and assembly of subunit 8 showed that assembly was noticeably delayed with respect to import. These findings open the way to a new systematic analysis of the assembly of imported proteins into multisubunit mitochondrial enzyme complexes.  相似文献   

10.
The yeast nuclear gene ATP2 encodes a F1-ATPase beta-subunit protein of 509 amino acids with a predicted mass of 54,575 daltons. In contrast to the ATPase beta-subunit proteins determined previously from Escherichia coli and various plant sources, the yeast mitochondrial precursor peptide contains a unique cysteine residue within its immediate amino terminus. Expression of an in-frame deletion in ATP2 between residues 28 and 34 to eliminate this single cysteine residue located near the processing site of the matrix protease does not prevent the in vivo delivery of the subunit to mitochondria or its assembly into a functional ATPase complex. Thus, the import F1 beta-subunit into mitochondria does not require a covalent modification of the type utilized for the secretion of the major lipoprotein from E. coli. In addition, analysis of the level of the major F1-ATPase subunits in mitochondria prepared from an atp2- disruption mutant demonstrates that the in vivo import of these catalytic subunits is not dependent on each other. These data and additional studies, therefore, suggest that the determinants for mitochondrial delivery reside within the amino terminus of the individual precursors.  相似文献   

11.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

12.
A 66 kDa protein, denoted P66, not hitherto classified as an integral component of yeast mitochondrial ATPase, is often observed in preparations of this enzyme complex. A physical association exists between P66 and the assembled ATPase complex since both components are coimmunoprecipitated by anti-F1 beta monoclonal antibody. Two recombinant clones expressing proteins immunologically similar to P66 were isolated from a yeast genomic library in lambda gt11 by screening with a polyclonal anti-holo-ATPase antibody. Based on restriction site mapping and partial nucleotide sequence analysis, both clones encompass the gene encoding the yeast heat shock protein hsp60. The identification of P66 with hsp60, taken together with its demonstrated association with the mitochondrial ATPase complex, is consistent with recent suggestions that hsp60 is involved in assembly of the ATP synthase complex.  相似文献   

13.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

14.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

15.
Zeng X  Hourset A  Tzagoloff A 《Genetics》2007,175(1):55-63
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.  相似文献   

16.
17.
NARP (neuropathy, ataxia, and retinitis pigmentosa) and MILS (maternally inherited Leigh syndrome) are mitochondrial disorders associated with point mutations of the mitochondrial DNA (mtDNA) in the gene encoding the Atp6p subunit of the ATP synthase. The most common and studied of these mutations is T8993G converting the highly conserved leucine 156 into arginine. We have introduced this mutation at the corresponding position (183) of yeast Saccharomyces cerevisiae mitochondrially encoded Atp6p. The "yeast NARP mutant" grew very slowly on respiratory substrates, possibly because mitochondrial ATP synthesis was only 10% of the wild type level. The mutated ATP synthase was found to be correctly assembled and present at nearly normal levels (80% of the wild type). Contrary to what has been reported for human NARP cells, the reverse functioning of the ATP synthase, i.e. ATP hydrolysis in the F(1) coupled to F(0)-mediated proton translocation out of the mitochondrial matrix, was significantly compromised in the yeast NARP mutant. Interestingly, the oxygen consumption rate in the yeast NARP mutant was decreased by about 80% compared with the wild type, due to a selective lowering in cytochrome c oxidase (complex IV) content. This finding suggests a possible regulatory mechanism between ATP synthase activity and complex IV expression in yeast mitochondria. The availability of a yeast NARP model could ease the search for rescuing mechanisms against this mitochondrial disease.  相似文献   

18.
Subunit 8 of yeast mitochondrial F1F0-ATPase is a proteolipid made on mitochondrial ribosomes and inserted directly into the inner membrane for assembly with the other F0 membrane-sector components. We have investigated the possibility of expressing this extremely hydrophobic, mitochondrially encoded protein outside the organelle and directing its import back into mitochondria using a suitable N-terminal targeting presequence. This report describes the successful import in vitro of ATPase subunit 8 proteolipid into yeast mitochondria when fused to the targeting sequence derived from the precursor of Neurospora crassa ATPase subunit 9. The predicted cleavage site of matrix protease was correctly recognized in the fusion protein. A targeting sequence from the precursor of yeast cytochrome oxidase subunit VI was unable to direct the subunit 8 proteolipid into mitochondria. The proteolipid subunit 8 exhibited a strong tendency to embed itself in mitochondrial membranes, which interfered with its ability to be properly imported when part of a synthetic precursor.  相似文献   

19.
We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F(0). Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure.  相似文献   

20.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号