共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present a novel fully hydrophilic, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel suitable for soft tissue engineering and delivery of protein drugs. The gels were designed to overcome drawbacks associated with current PEG hydrogels (i.e., reaction mechanisms or degradation products that compromise protein stability): the highly selective and mild cross‐linking reaction allowed for encapsulating proteins prior to gelation without altering their secondary structure as shown by circular dichroism experiments. Further, hydrogel degradation and structure, represented by mesh size, were correlated to protein release. It was determined that polymer density had the most profound effect on protein diffusivity, followed by the polymer molecular weight, and finally by the specific chemical structure of the cross‐linker. By examining the diffusion of several model proteins, we confirmed that the protein diffusivity was dependent on protein size as smaller proteins (e.g., lysozyme) diffused faster than larger proteins (e.g., Ig). Furthermore, we demonstrated that the protein physical state was preserved upon encapsulation and subsequent release from the PEG hydrogels and contained negligible aggregation or protein–polymer adducts. These initial studies indicate that the developed PEG hydrogels are suitable for release of stable proteins in drug delivery and tissue engineering applications. Biotechnol. Bioeng. 2011; 108:197–206. © 2010 Wiley Periodicals, Inc. 相似文献
3.
This study investigated osteogenesis of human mesenchymal stem cells encapsulated in matrix-metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG) hydrogels in chemically defined medium (10 ng/ml bone morphogenic factor-2). Thiol-norbornene photoclick hydrogels were formed with CRGDS and crosslinkers of PEG dithiol (nondegradable), CVPLS-LYSGC (P1) or CRGRIGF-LRTDC (P2; dash indicates cleavage site) at two crosslink densities. Exogenous MMP-2 degraded P1 and P2 hydrogels similarly. MMP-14 degraded P1 hydrogels more rapidly than P2 hydrogels. Cell spreading was greatest in P1 low crosslinked hydrogels and to a lesser degree in P2 low crosslinked hydrogels, but not evident in nondegradable and high crosslinked MMP-sensitive hydrogels. Early osteogenesis (Alkaline phosphatase [ALP] activity) was accelerated in hydrogels that facilitated cell spreading. Contrarily, late osteogenesis (mineralization) was independent of cell spreading. Mineralized matrix was present in P1 hydrogels, but only present in P2 high crosslinked hydrogels and not yet present in nondegradable hydrogels. Overall, the low crosslinked P1 hydrogels exhibited an accelerated early and late osteogenesis with the highest ALP activity (Day 7), greatest calcium content (Day 14), and greatest collagen content (Day 28), concomitant with increased compressive modulus over time. Collectively, this study demonstrates that in chemically defined medium, hydrogel degradability is critical to accelerating early osteogenesis, but other factors are important in late osteogenesis. 相似文献
4.
We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored. 相似文献
5.
6.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue. 相似文献
7.
Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles 总被引:1,自引:0,他引:1
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications. 相似文献
8.
Park MR Kim HW Hwang CS Han KO Choi YJ Song SC Cho MH Cho CS 《The journal of gene medicine》2008,10(2):198-207
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier. 相似文献
9.
Cationic polymers including polylysine (PLL) and polyethylenimine are being widely tested as gene delivery vectors in various gene therapy applications. In many cases, the polymers were further modified by hydrophilic polymer grafting or ligand conjugation, which had been shown to greatly affect the vector stability, delivery efficiency and specificity. The characterization of modified polycation is particularly critical for quality control and vector development. Here several different separation modes using capillary electrophoresis for the analytical characterization of the modified polymers are described. PLL molecules were grafted with poly(ethylene glycol) (PEG) chain or conjugated with epidermal growth factor and analyzed under various analytical conditions. Poly(N,N'-dimethylacrylamide)-coated capillary was used to analyze the modified PLL to reduce the interaction between the samples and the capillary wall. PLLs containing different numbers of conjugated ligands were well separated with the coating method but, for PLL-g-PEG, the separation was poor under the same conditions. A method using low buffer pH and hydroxypropylmethyl cellulose additive was developed. These methods are useful to characterize various polycations and important for the quality control and application of potential gene delivery vectors. 相似文献
10.
A simple, sequential approach for creation of hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels has been developed and characterized. The chemistry involves an initial step growth polymerization reaction between PEG-diacrylate and dithiothreitol (DTT) to form acrylate-terminated (-PEG-DTT-)n PEG chains, followed by photocross-linking to form a hydrogel network. Varying the extent of step growth polymerization prior to photocross-linking allowed for control over the equilibrium swelling ratio, degradation, and erosion of PEG hydrogels. Hydrogel degradability had a significant effect on behavior of human mesenchymal stem cells (hMSCs) encapsulated within PEG hydrogels, both in the presence and absence of an RGDSP cell adhesion ligand. In particular, enhanced network degradability resulted in enhanced hMSC viability and spreading during in vitro culture. Comparison of degradable and nondegradable hydrogels with similar physical properties (e.g., equilibrium swelling ratio) demonstrated that hMSC viability and spreading were dependent on network degradability. This study demonstrates that hydrolytically degradable PEG hydrogels can be formed via a sequential step growth polymerization and photocross-linking process and the resulting materials may serve as promising matrices for 3-dimensional stem cell culture and tissue engineering applications. 相似文献
11.
12.
Silviya P. Zustiak Stephanie Pubill Andreia Ribeiro Jennie B. Leach 《Biotechnology progress》2013,29(5):1255-1264
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC‐based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1255–1264, 2013 相似文献
13.
To address the need for bioactive materials toward clinical applications in wound healing and tissue regeneration, an artificial protein was created by recombinant DNA methods and modified by grafting of poly(ethylene glycol) diacrylate. Subsequent photopolymerization of the acrylate-containing precursors yielded protein-graft-poly(ethylene glycol) hydrogels. The artificial protein contained repeating amino acid sequences based on fibrinogen and anti-thrombin III, comprising an RGD integrin-binding motif, two plasmin degradation sites, and a heparin-binding site. Two-dimensional adhesion studies showed that the artificial protein had specific integrin-binding capability based on the RGD motif contained in its fibrinogen-based sequence. Furthermore, heparin bound strongly to the protein's anti-thrombin III-based region. Protein-graft-poly(ethylene glycol) hydrogels were plasmin degradable, had Young's moduli up to 3.5 kPa, and supported three-dimensional outgrowth of human fibroblasts. Cell attachment in three dimensions resulted from specific cell-surface integrin binding to the material's RGD sequence. Hydrogel penetration by cells involved serine-protease mediated matrix degradation in temporal and spatial synchrony with cellular outgrowth. Protein-graft-poly(ethylene glycol) hydrogels represent a new and versatile class of biomimetic hybrid materials that hold clinical promise in serving as implants to promote wound healing and tissue regeneration. 相似文献
14.
In this study, carboxymethyl chitosan was prepared, characterized, and then photo-induced graft copolymerized with poly(ethylene glycol) under a nitrogen atmosphere in aqueous solution using 2,2-dimethoxy-2-phenyl acetophenone (DMPA) as the photo-initiator. The grafting copolymerization process was confirmed and the resulting copolymers were characterized using differential scanning calorimetry (DSC), FTIR spectroscopy, 2D-X ray diffraction, and elemental analysis. The kinetics of the grafting reactions was also studied. Under the applied experimental conditions, the optimum grafting values were obtained at: CMCs = 0.2 g, PEGA = 249 mM, DMPA = 10.4 mM at a 2 h reaction time. Some of the resulting copolymers were selected and used in the presence of methylene bisacrylamide (MBA) as a crosslinking agent to develop pH-responsive hydrogel matrices. The swelling characteristics and the in vitro release profiles of 5-fluorouracil (5-FU), as a model drug, from the hydrogels were investigated. The results revealed that the hydrogel matrices developed in this study can be customized to act as good candidates in drug delivery systems. 相似文献
15.
Tang CS Schmutz P Petronis S Textor M Keller B Vörös J 《Biotechnology and bioengineering》2005,91(3):285-295
The protein-resistant polycationic graft polymer, poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), was uniformly adsorbed onto a homogenous titanium surface and subsequently subjected to a direct current (dc) voltage. Under the influence of an ascending cathodic and anodic potential, there was a steady and gradual loss of PLL-g-PEG from the conductive titanium surface while no desorption was observed on the insulating silicon oxide substrates. We have implemented this difference in the electrochemical response of PLL-g-PEG on conductive titanium and insulating silicon oxide regions as a biosensing platform for the controlled surface functionalization of the titanium areas while maintaining a protein-resistant background on the silicon oxide regions. A silicon-based substrate was micropatterned into alternating stripes of conductive titanium and insulating silicon oxide with subsequent PLL-g-PEG adsorption onto its surfaces. The surface modified substrate was then subjected to +1800 mV (referenced to the silver electrode). It was observed that the potentiostatic action removed the PLL-g-PEG from the titanium stripes without inducing any polyelectrolyte loss from the silicon oxide regions. Time-of-flight secondary ions mass spectroscopy and fluorescence microscopy qualitatively confirmed the PLL-g-PEG retention on the silicon oxide stripes and its absence on the titanium region. This method, known as "Locally Addressable Electrochemical Patterning Technique" (LAEPT), offers great prospects for biomedical and biosensing applications. In an attempt to elucidate the desorption mechanism of PLL-g-PEG in the presence of an electric field on titanium surface, we have conducted electrochemical impedance spectroscopy experiments on bare titanium substrates. The results showed that electrochemical transformations occurred within the titanium oxide layer; its impedance and polarization resistance were found to decrease steadily upon both cathodic and anodic polarization resulting in the polyelectrolyte desorption from the titanium surface. 相似文献
16.
The purpose of this study was to prepare poly(ethylene glycol) (PEG)ylated octreotide and investigate the stability against
acylation by polyester polymers such as poly(lactic acid) and poly(lactic-co-glycolic acid). Octreotide was modified by reaction
with monomethoxy PEG-propionaldehyde (molecular weight 5,000) in the presence of sodium cyanoborohydride. The mono-PEGylated
fraction was isolated by reverse-phase high-performance liquid chromatography (HPLC) and characterized by matrixassisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Circular dichroism demonstrated no significant secondary
structural differences between mono-PEGylated octreotide (mono-PEG-octreotide) and intact octreotide. As a test system for
the stability study against acylation reaction, lactic acid (LA) solutions with various concentrations and pH values were
prepared with water dilution and subsequent accelerated equilibration at 90°C for 24 hours. Native octreotide was found to
be acylated in all the diluted LA solutions with different concentrations (42.5%, 21.3%, and 8.5%, wt/wt) and pH values (2.25,
1.47, and 1.85, respectively). The remaining amounts of intact octreotide continuously decreased to 50% through 30 days of
incubation at 37°C. MALDI-TOF MS identified the octreotide to be acylated by LA units. However, acylation reaction of mono-PEG-octreotide
in LA solutions was negligible, and the remaining amounts of intact one through 30 days of incubation in LA solutions were
also comparable to the initial concentration. These data suggest that mono-PEG-octreotide may prevent the acylation reaction
in degrading PLA microspheres and possibly serve as a new source for somatostatin microsphere formulation. 相似文献
17.
Two fluorescence energy transfer assays for phospholipid vesicle-vesicle fusion have been developed, one of which is also sensitive to vesicle aggregation. Using a combination of these assays it was possible to distinguish between vesicle aggregation and fusion as induced by poly(ethylene glycol) PEG 8000. The chromophores used were 1-(4′-carboxyethyl)-6-diphenyl-trans-1,3,5-hexatriene as fluorescent ‘donor’ and 1-(4′-carboxyethyl)-6-(4″-nitro)diphenyl-trans-1,3,5-hexatriene as ‘acceptor’. These acids were appropriately esterified giving fluorescent phospholipid and triacylglycerol analogues. At 20°C poly(ethylene glycol) 8000 (PEG 8000) caused aggregation of l-α-dipalmitoylphosphatidylcholine (DPPC) vesicles without extensive fusion up to a concentration of about 35% (w/w). Fusion occurred above this poly(ethylene glycol) concentration. The triacylglycerol probes showed different behaviour from the phospholipids: while not exchangeable through solution in the absence of fusogen, they appeared to redistribute between bilayers under aggregating conditions. DPPC vesicles aggregated with < 35% poly(ethylene glycol) could not be disaggregated by dilution, as monitored by the phospholipid probes. However, DPPC vesicles containing approx. 5% phosphatidylserine which had been aggregated by poly(ethylene glycol) could be disaggregated by either dilution or sonication. Phospholipid vesicles aggregated by low concentrations of poly(ethylene glycol) appear to fuse to multilamellar structures on heating above the lipid phase transition temperature. 相似文献
18.
We synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively. The diffusional exponents, n, during the initial phase of water uptake were independent of the initial Agm-PEGF content and were determined to be 0.66 +/- 0.08, 0.71 +/- 0.07, and 0.60 +/- 0.05 for respective initial Agm-PEGF contents of 0, 100, and 200 mg/g. The heat of fusion of water present in the hydrogels increased from 214 +/- 11 to 254 +/- 4 J/g as the initial Agm-PEGF content increased from 0 to 200 mg/g. The number of adherent smooth muscle cells increased dose-dependently from 15 +/- 6 to 75 +/- 7% of the initial seeding density as the initial Agm-PEGF content increased from 0 to 200 mg/g. These results suggest that the incorporation of the guanidino groups of agmatine into P(PF-co-EG) hydrogels increases the hydrogel free water content and the total water content of the hydrogels and also enhances cell adhesion to the hydrogels. 相似文献
19.
Allen C Dos Santos N Gallagher R Chiu GN Shu Y Li WM Johnstone SA Janoff AS Mayer LD Webb MS Bally MB 《Bioscience reports》2002,22(2):225-250
The presence of poly(ethylene glycol) (PEG) at the surface of a liposomal carrier has been clearly shown to extend the circulation lifetime of the vehicle. To this point, the extended circulation lifetime that the polymer affords has been attributed to the reduction or prevention of protein adsorption. However, there is little evidence that the presence of PEG at the surface of a vehicle actually reduces total serum protein binding. In this review we examine all aspects of PEG in order to gain a better understanding of how the polymer fulfills its biological role. The physical and chemical properties of the polymer are explored and compared to properties of other hydrophilic polymers. An evidence based assessment of several in vitro protein binding studies as well as in vivo pharmacokinetics studies involving PEG is included. The ability of PEG to prevent the self-aggregation of liposomes is considered as a possible means by which it extends circulation longevity. Also, a dysopsonization phenomenon where PEG actually promotes binding of certain proteins that then mask the vehicle is discussed. 相似文献
20.
Villanueva I Klement BJ von Deutsch D Bryant SJ 《Biotechnology and bioengineering》2009,102(4):1242-1250
In designing a tissue engineering strategy for cartilage repair, selection of both the bioreactor, and scaffold is important to the development of a mechanically functional tissue. The hydrodynamic environment associated with many bioreactors enhances nutrient transport, but also introduces fluid shear stress, which may influence cellular response. This study examined the combined effects of hydrogel cross-linking and the hydrodynamic environment on early chondrocyte response. Specifically, chondrocytes were encapsulated in poly(ethylene glycol) (PEG) hydrogels having two different cross-linked structures, corresponding to a low and high cross-linking density. Both cross-linked gels yielded high water contents (92% and 79%, respectively) and mesh sizes of 150 and 60 A respectively. Cell-laden PEG hydrogels were cultured in rotating wall vessels (RWV) or under static cultures for up to 5 days. Rotating cultures yielded low fluid shear stresses (< or = 0.11 Pa) at the hydrogel periphery indicating a laminar hydrodynamic environment. Chondrocyte response was measured through total DNA content, total nitric oxide (NO) production, and matrix deposition for glycosaminoglycans (GAG). In static cultures, gel cross-linking had no effect on DNA content, NO production, or GAG production; although GAG production increased with culture time for both cross-linked gels. In rotating cultures, DNA content increased, NO production decreased, and overall GAG production decreased when compared to static controls for the low cross-linked gels. For the high cross-linked gels, the hydrodynamic environment had no effect on DNA content, but exhibited similar results to the low cross-linked gel for NO production, and matrix production. Our findings demonstrated that at early culture times, when there is limited matrix production, the hydrodynamic environment dramatically influences cell response in a manner dependent on the gel cross-linking, which may impact long-term tissue development. 相似文献