首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epibrassinolide (EBR) is a biologically active compound of the brassinosteroids, steroid-derived plant growth regulator family. Generally, brassinosteroids are known for their cell expansion and cell division-promoting roles. Recently, EBR was shown as a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth. Androgen signaling controls cell proliferation through the interaction with the androgen receptor (AR) in the prostate gland. Initially, the development of prostate cancer is driven by androgens. However, in later stages, a progress to the androgen-independent stage is observed, resulting in metastatic prostate cancer. The androgen-responsive or -irresponsive cells are responsible for tumor heterogeneity, which is an obstacle to effective anti-cancer therapy. Polyamines are amine-derived organic compounds, known for their role in abnormal cell proliferation as well as during malignant transformation. Polyamine catabolism-targeting agents are being investigated against human cancers. Many chemotherapeutic agents including polyamine analogs have been demonstrated to induce polyamine catabolism that depletes polyamine levels and causes apoptosis in tumor models. In our study, we aimed to investigate the mechanism of apoptotic cell death induced by EBR, related with polyamine biosynthetic and catabolic pathways in LNCaP (AR+), DU145 (AR?) prostate cancer cell lines and PNT1a normal prostate epithelial cell line. Induction of apoptotic cell death was observed in prostate cancer cell lines after EBR treatment. In addition, EBR induced the decrease of intracellular polyamine levels, accompanied by a significant ornithine decarboxylase (ODC) down-regulation in each prostate cancer cell and also modulated ODC antizyme and antizyme inhibitor expression levels only in LNCaP cells. Catabolic enzymes SSAT and PAO expression levels were up-regulated in both cell lines; however, the specific SSAT and PAO siRNA treatments prevented the EBR-induced apoptosis only in LNCaP (AR+) cells. In a similar way, MDL 72,527, the specific PAO and SMO inhibitor, co-treatment with EBR during 24 h, reduced the formation of cleaved fragments of PARP in LNCaP (AR+) cells.  相似文献   

2.
The receptor tyrosine kinase Axl is overexpressed in a variety of cancers and is known to play a role in proliferation and invasion. Previous data from our laboratory indicate that Axl and its ligand growth arrest-specific 6 (GAS6) may play a role in establishing metastatic dormancy in the bone marrow microenvironment. In the current study, we found that Axl is highly expressed in metastatic prostate cancer cell lines PC3 and DU145 and has negligible levels of expression in a nonmetastatic cancer cell line LNCaP. Knockdown of Axl in PC3 and DU145 cells resulted in decreased expression of several mesenchymal markers including Snail, Slug, and N-cadherin, and enhanced expression of the epithelial marker E-cadherin, suggesting that Axl is involved in the epithelial-mesenchymal transition in prostate cancer cells. The Axl-knockdown PC3 and DU145 cells also displayed decreased in vitro migration and invasion. Interestingly, when PC3 and DU145 cells were treated with GAS6, Axl protein levels were downregulated. Moreover, CoCl(2), a hypoxia mimicking agent, prevented GAS6-mediated downregulation of Axl in these cell lines. Immunochemical staining of human prostate cancer tissue microarrays showed that Axl, GAS6, and hypoxia-inducible factor-1α (Hif-1α; indicator of hypoxia) were all coexpressed in prostate cancer and in bone metastases compared with normal tissues. Together, our studies indicate that Axl plays a crucial role in prostate cancer metastasis and that GAS6 regulates the expression of Axl. Importantly, in a hypoxic tumor microenvironment Axl expression is maintained leading to enhanced signaling.  相似文献   

3.
4.
Previous studies have shown that rapid cell proliferation is associated with elevated glucose consumption. However, those studies did not establish whether glucose is required for prostate cancer cell proliferation or define the molecular mechanisms by which glucose regulates cell division. We addressed these issues by studying two metastatic human prostate cancer cell lines: DU145, which is androgen independent and highly proliferative; and LNCaP, which is androgen dependent and relatively slow growing. We found that proliferation of DU145 cells was significantly inhibited by reduction of glucose in the medium to 0.5 g/L, which is half the physiologic concentration, whereas LNCaP cells grew at control rates even in the presence of only 0.05 g/L glucose. Glucose deprivation of DU145 cells caused a 90% reduction in DNA synthesis; a 10–20-fold reduction in cyclins D and E and CDK4 levels; and cell cycle arrest in G0-G1. However, glucose deprivation did not cause global inhibition of protein synthesis, since mutant p53 levels increased in glucose-deprived DU145 cells. This observed increase in mutant p53 levels was not associated with a rise in p21 levels. Glucose deprivation of DU145 cells also led to apparent dephosphorylation of mutant retinoblastoma (RB) protein. We conclude that: 1) high levels of glucose consumption are required for rapid proliferation of androgen-independent prostate cancer cells, 2) glucose may not be required for slow growth of androgen-dependent prostate cancer cells, and 3) glucose promotes passage of cells through early G1 by increasing the expression of several key cell cycle regulatory proteins that normally inhibit RB function. J. Cell. Physiol. 180:431–438, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

5.
2-Methoxyestradiol induces G2/M arrest and apoptosis in prostate cancer   总被引:5,自引:0,他引:5  
Few therapeutic treatment options are available for patients suffering from metastatic androgen-independent prostate cancer. We investigated the ability of the estrogen metabolite 2-methoxyestradiol to inhibit the proliferation of a variety of human prostate cancer cell lines in vitro and to inhibit the growth of androgen-independent prostate cancer in a transgenic mouse model in vivo. Our results showed that 2-methoxyestradiol is a powerful growth inhibitor of LNCaP, DU 145, PC-3, and ALVA-31 prostate cancer cells. Cell flow cytometry of 2-methoxyestradiol-treated DU 145 cells showed a marked accumulation of cells in the G2/M phase of the cell cycle and an increase in the sub-G1 fraction (apoptotic). In addition, staining for annexin V, changes in nuclear morphology, and inhibition of caspase activity support a role for apoptosis. More importantly, we showed that 2-methoxyestradiol inhibits prostate tumor progression in the Ggamma/T-15 transgenic mouse model of androgen-independent prostate cancer without toxic side effects. These results in cell culture and an animal model support investigations into the clinical use of 2-methoxyestradiol in patients with androgen-independent prostate cancer.  相似文献   

6.
We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well.  相似文献   

7.
DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.  相似文献   

8.
Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.  相似文献   

9.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   

10.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

11.
Abstract

Celecoxib is a clinically available COX-2 inhibitor that has been reported to have antineoplastic activity. It has been proposed as a preventative agent for several types of early neoplastic lesions. Earlier studies have shown that sensitivity of prostatic carcinoma (PCa) to celecoxib is associated with apoptosis; however, these studies have not demonstrated adequately whether this effect is dependent on p53 status. We studied the relation between sensitivity to celecoxib and the phenotypic p53 status of PCa cells lines, LNCaP (wild type p53), PC3 (null p53) and DU145 (mutated p53). Cellular growth was assessed at 24, 48, 72 and 96 h after celecoxib treatment at concentrations of 0, 10, 30, 50, 70 and 100 μM using an MTT assay. Cellular proliferation (Ki-67 expression) was determined by immunocytochemistry. Phenotypic expression of p53 was analyzed by western blotting. The effects of celecoxib on cellular growth and its association with p53 were assessed after down-regulation of p53 using synthetic interfering RNAs (siRNA) in LNCaP cells. Expression of p53 and COX-2 at mRNA levels was assessed by quantitative real time polymerase reaction (qRT-PCR). We found that celecoxib inhibited cellular growth and proliferation in a dose-dependent manner in all three cell lines; LNCaP cells with a native p53 were the most sensitive to celecoxib. We observed a down- regulation effect on p53 in LNCaP cells exposed to ≥ 30 μM celecoxib for 72 h, but found no significant changes in the p53 levels of DU145 cells, which have a mutated p53. Reduced COX-2 expression was found with decreased p53 in LNCaP and PC-3 cells that were exposed to ≥ 20 μM of celecoxib for 72 h, but COX-2 expression was increased in DU145 cells. All three cell lines demonstrated pan-cytotoxicity when exposed to 100 μM celecoxib. When p53 expression was inhibited using siRNA in LNCaP cells, the inhibitory effects on cellular growth usually exerted by celecoxib were not changed significantly. Celecoxib reduces the growth of prostate cancer cell lines in part by decreasing proliferation, which suggests that the inhibition of growth of LNCaP cells by celecoxib is independent of normal levels of native p53.  相似文献   

12.
Polyamines and prostatic cancer   总被引:7,自引:0,他引:7  
The importance of polyamines in prostatic growth and differentiation has prompted studies to evaluate the clinical relevance of the ornithine decarboxylase/polyamine system in prostatic cancer. These studies show that differences in biological behaviour of prostatic (cancer) cells are associated with changes in polyamine levels and/or the activity of their metabolic enzymes. Faulty antizyme regulation of polyamine homoeostasis may play an important role in the growth and progression of prostatic carcinoma. Treatment of human prostate carcinoma cells with inhibitors of polyamine metabolic enzymes or polyamine analogues induces cell growth arrest or (apoptotic) cell death. Our recent in vitro studies using conformationally restricted polyamine analogues show that these compounds inhibit cell growth, probably by inducing antizyme-mediated degradation of ornithine decarboxylase. Sensitivity of human prostate cancer cells for these compounds was increased in the absence of androgens. These results suggest that these analogues might have chemotherapeutic potential in case prostatic cancer has become androgen-independent. Pilot data in an in vivo model show that these analogues have effects on tumour cell proliferation, vascularity, blood perfusion and tissue hypoxia. Overall, these studies show that polyamines may serve as important biomarkers of prostatic malignancy and provide a promising target for chemotherapy of prostatic cancer.  相似文献   

13.
Numerous studies have correlated elevated polyamine levels with abnormal or rapid cell growth. One therapeutic strategy to treat diseases with increased cellular proliferation rates, most obviously cancer, has been to identify compounds which lower cellular polyamine levels. An ideal target for this strategy is the protein antizyme-a negative regulator of polyamine biosynthesis and import, and a positive regulator of polyamine export. In this study, we have optimized two tissue-culture assays in 96-well format, to allow the rapid screening of a 750-member polyamine analog library for compounds which induce antizyme frameshifting and fail to substitute for the natural polyamines in growth. Five analogs (MQTPA1-5) containing xylene (1,4-dimethyl benzene) were found to be equal to or better than spermidine at stimulating antizyme frameshifting and were inefficient at rescuing cell growth following polyamine depletion. These compounds were further characterized for effects on natural polyamine levels and enzymes involved in polyamine metabolism. Finally, direct measurements of antizyme induction in cells treated with two of the lead compounds revealed an 8- to 15-fold increase in antizyme protein over untreated cells. The impact of the xylene moiety and the distance between the positively charged amino groups on antizyme frameshifting and cell growth are discussed.  相似文献   

14.
It is well established that autocrine growth of human prostate cancer cell line DU145 is dependent on TGF (EGF)/EGFR loop. However, the participation of several other growth factors in proliferation of DU145 cells has been also proposed. We employed two selective tyrosine kinase inhibitors (tyrphostins): AG1024 (an IGFIR inhibitor) and SU1498 (a VEGFR2 inhibitor) for growth regulation of DU145 cells, cultured in chemically defined DMEM/F12 medium. Both the tested compounds inhibited autocrine growth of DU145 cells at similar concentration values (IC50 approximately 2.5 microM). The tyrphostins arrested cell growth of DU145 in G1 phase, similarly as inhibitors of EGFR. However, in contrast to selective inhibitors of EGFR, neither AG1024, nor SU1498 (at concentration < or =10 microM) decreased the viability of the investigated cells. These results strongly suggest that autocrine growth of DU145 cells is stimulated by, at least, three autocrine loops: TGFalpha(EGF)/EGFR, IGFII/IGFIr and VEGF/VEGFR2(VEGFR1). These data support the hypothesis of multi-loops growth regulation of metastatic prostate cancer cell lines.  相似文献   

15.
Prostate cancer bone metastases are characterized by their ability to induce osteoblastic lesions and local bone formation. It has been suggested that bone metastatic prostate cancer cells are osteomimetic and capable of expressing genes and proteins typically expressed by osteoblasts. The ability of preosteoblasts to differentiate and express osteoblastic genes depends on several pathways, including Notch and MAPK. Here we show that notch1 expression is increased 4-5 times in C4-2B and MDA PCa 2b cells (osteoblastic skeletal prostate metastatic cancer cell lines) when compared with nonskeletal metastatic cell lines (LNCaP and DU145). Notch1 ligand, dll1, is expressed only in C4-2B cells. Immunohistochemical studies demonstrate that Notch1 is present in both human clinical samples from prostate cancer bone metastases and the C4-2B cell line. To determine whether prostate cancer bone metastases respond to osteogenic induction similar to osteoblasts, C4-2B cells were cultured in osteogenic medium that promotes mineralization. C4-2B cells mineralize and express HES-1 (a downstream target of Notch), an effect that is completely inhibited by L-685,458, a Notch activity inhibitor. Furthermore, osteogenic induction increases ERK activation, runx2 expression, and nuclear localization, independent of Notch signaling. Finally, we show that Notch and ERK activation are essential for Runx2 DNA binding activity and osteocalcin gene expression in C4-2B cells in response to osteogenic induction. These studies demonstrate that prostate cancer bone metastatic cell lines acquire osteoblastic properties through independent activation of ERK and Notch signaling; presumably, both pathways are activated in the bone microenvironment.  相似文献   

16.
Androgen-ablation is a most commonly prescribed treatment for metastatic prostate cancer but it is not curative. Development of new strategies for treatment of prostate cancer is limited partly by a lack of full understanding of the mechanism by which androgen regulates prostate cancer cell proliferation. This is due, mainly, to the limitations in currently available experimental models to distinguish androgen/androgen receptor (AR)-induced events specific to proliferation from those that are required for cell viability. We have, therefore, developed an experimental model system in which both androgen-sensitive (LNCaP) and androgen-independent (DU145) prostate cancer cells can be reversibly blocked in G(0)/G(1) phase of cell cycle by isoleucine deprivation without affecting their viability. Pulse-labeling studies with (3)H-thymidine indicated that isoleucine-deprivation caused LNCaP and DU145 cells to arrest at a point in G(1) phase which is 12-15 and 6-8 h, respectively, before the start of S phase and that their progression into S phase was dependent on serum factors. Furthermore, LNCaP, but not DU145, cells required AR activity for progression from G(1) into S phase. Western blot analysis of the cell extracts prepared at regular intervals following release from isoleucine-block revealed remarkable differences in the expression of cyclin E, p21(Cip1), p27(Kip1), and Rb at the protein level between LNCaP and DU145 cells during progression from G(1) into S phase. However, in both cell types Cdk-2 activity associated with cyclin E and cyclin A showed an increase only when the cells transited from G(1) into S phase. These observations were further corroborated by studies using exponentially growing cells that were enriched in specific phases of the cell cycle by centrifugal elutriation. These studies demonstrate usefulness of the isoleucine-deprivation method for synchronization of androgen-sensitive and androgen-independent prostate cancer cells, and for examining the role of androgen and AR in progression of androgen-sensitive prostate cancer cells from G(1) into S phase.  相似文献   

17.
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC(50) values after 24h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 microg/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation, (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 microg/ml. In cell cycle analysis, TRF (10-40 microg/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.  相似文献   

18.
19.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

20.
BACKGROUND: Neuroendocrine differentiation in prostatic carcinoma has been related to regulation of proliferation and metastatic potential and correlated with prognosis. More than 80% of prostate carcinomas initially respond to androgen ablation, but most relapse, due to the heterogeneous presence of androgen-dependent and independent clones. The pathways of cellular proliferation and apoptosis are inexorably linked to minimize the occurrence of neoplasia, and disfunction of apoptosis is proposed as a pathogenic process in malignant tumors. Androgen-dependent prostatic cancer cells undergo apoptosis after androgen deprivation, but not androgen-independent ones due to a defect in the initiation step. Anyway, they retain the basic cellular machinery to undergo apoptosis. We suggest a possible role of neuroendocrine differentiation in the onset and regulation of apoptosis in prostatic neoplasia. METHODS: LNCaP, PC-3 and DU 145 prostatic cancer cell lines were induced to undergo apoptosis after treatment with etoposide alone or plus androgen ablation. We tested the role of neuropeptides bombesin and calcitonin at modulating etoposide induced apoptosis. RESULTS: Etoposide-induced apoptosis in all cancer cell lines was achieved. In LNCaP androgen ablation was also required. Apoptosis is prevented in all three lines when bombesin was added. Calcitonin addition prevents apoptosis in PC-3, LNCaP and in an etoposide dose-dependent way in DU 145. CONCLUSION: Neuropeptides bombesin and calcitonin can modulate the apoptotic response of prostate cancer cells by inducing resistance to etoposide-induced apoptosis, suggesting that neuropeptides can be used as a target of therapeutical approach in prostatic carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号