首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Despite androgen deprivation therapy (ADT) suppression of prostate cancer (PCa) growth, its overall effects on PCa metastasis remain unclear. Using human (C4-2B/THP1) and mouse (TRAMP-C1/RAW264.7) PCa cells–macrophages co-culture systems, we found currently used anti-androgens, MDV3100 (enzalutamide) or Casodex (bicalutamide), promoted macrophage migration to PCa cells that consequently led to enhanced PCa cell invasion. In contrast, the AR degradation enhancer, ASC-J9, suppressed both macrophage migration and subsequent PCa cell invasion. Mechanism dissection showed that Casodex/MDV3100 reduced the AR-mediated PIAS3 expression and enhanced the pSTAT3-CCL2 pathway. Addition of CCR2 antagonist reversed the Casodex/MDV3100-induced macrophage migration and PCa cell invasion. In contrast, ASC-J9 could regulate pSTAT3-CCL2 signaling using two pathways: an AR-dependent pathway via inhibiting PIAS3 expression and an AR-independent pathway via direct inhibition of the STAT3 phosphorylation/activation. These findings were confirmed in the in vivo mouse model with orthotopically injected TRAMP-C1 cells. Together, these results may raise the potential concern about the currently used ADT with anti-androgens that promotes PCa metastasis and may provide some new and better therapeutic strategies using ASC-J9 alone or a combinational therapy that simultaneously targets androgens/AR signaling and PIAS3-pSTAT3-CCL2 signaling to better battle PCa growth and metastasis at castration-resistant stage.  相似文献   

4.
Endocrine therapy for prostate cancer (PCa) mainly inhibits androgen receptor (AR) signaling, due to increased androgen synthesis and AR changes, PCa evolved into castration-resistant prostate cancer (CRPC). The function of Family With Sequence Similarity 64 Member A (FAM64A) and its association with prostate cancer has not been reported. In our research, we first reported that FAM64A is up-regulated and positively associated with poor prognosis of patients with prostate cancer (PCa) by TCGA database and immunohistochemistry staining. Moreover, knockdown of FAM64A significantly suppressed the proliferation, migration, invasion, and cell cycle of PCa cells in vitro. Mechanistically, FAM64A expression was increased by dihydrotestosterone (DHT) through direct binding of AR to FAM64A promoter, and notably promoted the proliferation, migration, invasion, and cell cycle of androgen-dependent cell line of PCa. In addition, abnormal expression of FAM64A affects the immune and interferon signaling pathway of PCa cells. In conclusion, FAM64A was up-regulated by AR through directly binding to its specific promoter region to promote the development of PCa, and was associated with the immune mechanism and interferon signaling pathway, which provided a better understanding and a new potential for treating PCa.Subject terms: Penile cancer, Predictive markers  相似文献   

5.
Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa.  相似文献   

6.
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.  相似文献   

7.
8.
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the “molecular signature” of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.  相似文献   

9.
10.
11.
12.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

13.
14.
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.  相似文献   

15.
16.
17.
18.
19.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

20.
Androgen receptor (AR) expression surveys found that normal prostate/prostate cancer (PCa) stem/progenitor cells, but not embryonic or mesenchymal stem cells, expressed little AR with high methylation in the AR promoter. Mechanism dissection revealed that the differential methylation pattern in the AR promoter could be due to differential expression of methyltransferases and binding of methylation binding protein to the AR promoter region. The low expression of AR in normal prostate/PCa stem/progenitor cells was reversed after adding 5-aza-2′-deoxycytidine, a demethylating agent, which could then lead to decreased stemness and drive cells into a more differentiated status, suggesting that the methylation in the AR promoter of prostate stem/progenitor cells is critical not only in maintaining the stemness but also critical in protection of cells from differentiation. Furthermore, induced AR expression, via alteration of its methylation pattern, led to suppression of the self-renewal/proliferation of prostate stem/progenitor cells and PCa tumorigenesis in both in vitro assays and in vivo orthotopic xenografted mouse studies. Taken together, these data prove the unique methylation pattern of AR promoter in normal prostate/PCa stem/progenitor cells and the influence of AR on their renewal/proliferation and differentiation. Targeting PCa stem/progenitor cells with alteration of methylated AR promoter status might provide a new potential therapeutic approach to battle PCa because the PCa stem/progenitor cells have high tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号