首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hemin-mediated dissociation of erythrocyte membrane skeletal proteins   总被引:2,自引:0,他引:2  
Spectrin tetramers and oligomers in normal erythrocytes are cross-linked by actin and protein 4.1 to form a two-dimensional membrane skeletal network. In the present study, we find that hemin, a breakdown product of hemoglobin, progressively (a) alters the conformation of spectrin as revealed by electron microscope studies and by the decreased resistance of spectrin to proteolytic degradation, (b) alters the conformation of protein 4.1 as revealed by the increased mobility of protein 4.1 on nondenaturing gel electrophoresis, (c) weakens spectrin dimer alpha beta-dimer alpha beta, spectrin alpha-spectrin beta, as well as spectrin-protein 4.1 associations as analyzed by nondenaturing gel electrophoresis, and (d) diminishes the structural stability of erythrocyte membrane skeletons (i.e. Triton-insoluble ghost residues) subjected to mechanical shearing. Since hemin may be liberated from oxidized or unstable mutant hemoglobin under pathological conditions, these hemin-induced effects on spectrin, protein 4.1, and membrane skeletal stability may play a role in the membrane lesion of these erythrocytes.  相似文献   

2.
Trace amounts of radiolabeled phospholipids were inserted into the outer membrane leaflet of intact human erythrocytes, using a non-specific lipid transfer protein. Phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine were transferred from the donor lipid vesicles to the membrane of the intact red cell with equal ease, whilst sphingomyelin was transferred 6-times less efficiently. The transbilayer mobility and equilibrium distribution of the labeled phospholipids were assessed by treatment of the intact cells with phospholipases. In fresh erythrocytes, the labeled amino phospholipids appeared to move rapidly towards the inner leaflet. The choline phospholipids, on the other hand, approached an equilibrium distribution which strongly favoured the outer leaflet. In ATP-depleted erythrocytes, the relocation of the amino phospholipids was markedly retarded.  相似文献   

3.
The object of this paper is to review briefly the studies on the interaction of red blood cell membrane skeletal proteins and their non-erythroid analogues with lipids in model systems as well as in natural membranes. An important question to be addressed is the physiological significance and possible regulatory molecular mechanisms in which these interactions are engaged.  相似文献   

4.
The molar ratio of cholesterol to phospholipid (C/P) in human erythrocyte membrane is modified by incubating the cells with liposomes of various C/P ratios. The observed increase in cell surface area may be accounted for by the addition of cholesterol molecules. Fusion between liposomes and cells or attachment of liposomes to cells is not a significant factor in the alteration of C/P ratio. Onset temperatures for lipid phase separation in modified membranes are measured by electron diffraction. The onset temperature increases with decreasing C/P ration from 2 degrees C at C/P = 0.95 to 20 degrees C at C/P = 0.5. Redistribution of intramembrane particles is observed in membranes freeze-quenched from temperatures below the onset temperature. The heterogeneous distribution of intramembrane particles below the onset temperature suggests phase separation of lipid, with concomitant segregation of intramembrane protein into domains, even in the presence of an intact spectrin network.  相似文献   

5.
The effect of concanavalin A and its succinylated derivative on cell agglutination and potassium compartmentation of mature and immature erythrocytes was observed. The binding of tetravalent concanavalin A to the surface glycoproteins of rabbit erythrocytes leads to a change in the properties of the surface membrane, which results in an induction of cell agglutination and concomitant release of potassium from the cells. Both of the phenomena induced by concanavalin A are temperature dependent, and observed at above 15°C.Divalent succinylated concanavalin A, lacking the inducing activity of surface glycoprotein cross-linking into patches and caps, caused neither cell agglutination nor change in the potassium compartmentation of erythrocytes and reticulocytes.In the case of immature reticulocytes, however, remarkable agglutination of the cells was induced without a change in the potassium compartmentation after treatment with tetravalent concanavalin A.It is suggested that changes in the molecular organization of the surface membrane occur in which potassium compartmentation of the reticulocytes becomes more susceptible to surface glycoprotein cross-linking during cellular maturation.  相似文献   

6.
Human erythrocyte membranes were enriched or depleted of cholesterol and effects on membrane proteins assessed with a membrane-impermeant sulfhydryl reagent, [35S]glutathione-maleimide. Reaction of the probe with intact cells quantifies exofacial sulfhydryl groups and reaction with leaky ghost membranes permits quantification of endofacial sulfhydryl groups. The mean endofacial sulfhydryl titer of cholesterol-enriched membranes exceeded that of cholesterol-depleted membrane by approximately 45 nmol/mg of protein or 64%. The corresponding exofacial titer of cholesterol-enriched cells was less than that of cholesterol-depleted cells by approximately 0.4 nmol/mg of protein, or 14%. Labeled membranes were examined by autoradiography of sodium dodecyl sulfate-polyacrylamide gel electropherograms to determine the labeling patterns of individual protein bands. Cholesterol enrichment enhanced the surface labeling of Coomassie brilliant blue stained bands 1,2,3, and 5, decreased the labeling of band 6, and did not change significantly that of band 4. The results demonstrate that changes in membrane cholesterol which influence lipid fluidity can alter the surface labeling of both intrinsic and extrinsic membrane proteins.  相似文献   

7.
The proteins of the erythrocyte membrane   总被引:9,自引:0,他引:9  
  相似文献   

8.
Peroxidation-induced perturbations of erythrocyte lipid organization   总被引:2,自引:0,他引:2  
Peroxidation of erythrocyte membrane lipids by hydrogen peroxide perturbs the lipid bilayer and increases phagocytosis by macrophages. This study addresses the underlying mechanism of these processes, and in particular the role of malondialdehyde, a major byproduct of lipid peroxidation. When erythrocytes were treated with hydrogen peroxide or ascorbate/iron to generate malondialdehyde, or with malondialdehyde itself, only those cells treated with hydrogen peroxide showed increased phospholipid spacing and enhanced phagocytosis. This result indicates that the alterations observed are unique to hydrogen peroxide treatment, and that malondialdehyde does not play a role in inducing these changes in surface properties. Comparison of adherence to human umbilical vein endothelial cells and phagocytosis showed that increased phagocytosis was not mirrored by enhanced adherence. This result suggests that two different signals may mediate recognition of erythrocytes by macrophages and by endothelial cells.  相似文献   

9.
We offer an objective definition of the domains of a protein, given its Cα coordinates from high-resolution X-ray crystal studies. This is done by an algorithm which groups segments of the polypeptide chain together when there are a relatively large number of contacts between the two segments. The result is an organizational tree showing a hierarchy of segments grouping together, then clusters merging until all parts of the chain are included. In this view the highest level clusters correspond well to more subjective definitions of folding domains and the lowest level, the segments, roughly match the usual assignments of pieces of secondary structure. The intermediate level clusters suggest possible folding mechanisms, which are discussed.  相似文献   

10.
The membrane potential profile of erythrocytes is calculated on the basis of realistic data on the electric charges of the glycocalyx, the spectrin layer as well as of the phosphatidyl serine molecules. Various stationary and quasi-stationary osmotic states of erythrocytes are considered. The calculations are performed by numerical integration of the nonlinear Poisson-Boltzmann equation. It is shown that the potential profile is strongly influenced by the negative charges of phosphatidyl serine at the inner membrane surface. For all osmotic states a negative inner surface potential of more than 60 mV was calculated.The basic model is extended by incorporation of a specific binding of the cations calcium, magnesium and sodium to phosphatidyl serine as well as by consideration of the finite volumes of the ions of the electrolyte. Both effects have only a weak influence on the membrane potential profile of erythrocytes.  相似文献   

11.
The addition of malondialdehyde to erythrocytes in vitro causes a decrease in bands 1 and 2 of spectrin and an increase in high molecular weight protein polymers. Additionally, this agent causes the formation of fluorscent chromolipids characteristic of those produced during the peroxidation of endogenous membrane phospholipids. These same alterations in proteins and lipids are observed in the membranes of older cells fractionated from freshly drawn blood and in the membranes of reticulocytes induced by treatment of animals with phenylhydrazine, but not in reticulocytes induced by bleeding. The former reticulocytes have a much shorter half-life in the circulation than do either normal erythrocytes or reticulocytes produced consequent to bleeding. These experiments and the apparent paradox of "young" reticulocytes with short half-lives suggest that the in vivo polymerization of membrane proteins consequent to radical-induced peroxidation of membrane lipids may contribute to the altered rheological behavior and hence to the splenic sequestration of cells. They also suggest that increases in intrinsic membrane rigidity due to lipid peroxidation, malondialdehyde, and protein polymerization may be a common feature of both aging in normal erythrocytes and in the accelerated aging that accompanies the administration of radical-generating, hemolytic agents. However, it is cautioned that other polymerization reactions involving disulfides, calcium, or direct radical attack on protein monomers may also be important determinants of the visco-elastic properties of erythrocyte membranes.  相似文献   

12.
M Minetti  A M Di Stasi 《Biochemistry》1987,26(25):8133-8137
The effects of phenothiazines (chlorpromazine, chlorpromazine sulfoxide, and trifluoperazine) and antimitotic drugs (colchicine and vinblastine) on the erythrocyte membrane have been investigated. Chlorpromazine and trifluoperazine induced a dose-dependent increase in the freedom of motion of stearic acid spin-labels bound to both intact erythrocytes and ghosts, but did not affect the freedom of motion of stearic acids bound to vesicles depleted of spectrin and actin or of ghosts resealed with anti-spectrin antibodies. Further, chlorpromazine and trifluoperazine were able to eliminate a protein 4.1 dependent membrane thermal transition detected by stearic acid spin-labels at 8.5 +/- 1.5 degrees C. Antimitotic drugs and chlorpromazine sulfoxide did not change either the freedom of motion of stearic acid spin-labels or the 8.5 degrees C membrane thermal transition. Results indicate the involvement of skeletal proteins as possible membrane target sites of biologically active phenothiazines and suggest that the control of stearic acid spin-label freedom of motion is mediated by the spectrin-actin network and the proteins that link the skeletal network to the membrane.  相似文献   

13.
Rhesus monkey erythrocytes were subjected to heating at 50 degrees C for 5-15 min, and the heat-induced effects on the membrane structure were ascertained by analysing the membrane phospholipid organization and membrane skeleton dynamics and interactions in the heated cells. Membrane skeleton dynamics and interactions were determined by measuring the Tris-induced dissociation of the Triton-insoluble membrane skeleton (Triton shells), the spectrin-actin extractability at low ionic strength, spectrin self-association and spectrin binding to normal monkey erythrocyte membrane inside-out vesicles (IOVs). The Tris-induced Triton shell dissociation and spectrin-actin extractability were markedly decreased by the erythrocyte heating. Also, the binding of the heated erythrocyte membrane spectrin-actin with the IOVs was much smaller than that observed with the normal erythrocyte spectrin-actin. Further, the spectrin structure was extensively modified in the heated cells, as compared to the normal erythrocytes. Transbilayer phospholipid organization was ascertained by employing bee venom and pancreatic phospholipases A2, fluorescamine, and Merocyanine 540 as the external membrane probes. The amounts of aminophospholipids hydrolysed by phospholipases A2 or labeled by fluorescamine in intact erythrocytes considerably increased after subjecting them to heating at 50 degrees C for 15 min. Also, the fluorescent dye Merocyanine 540 readily stained the 15-min-heated cells but not the fresh erythrocytes. Unlike these findings, the extent of aminophospholipid hydrolysis in 5-min-heated cells by phospholipases A2 depended on the incubation time. While no change in the membrane phospholipid organization could be detected in 10 min, prolonged incubations led to the increased aminophospholipid hydrolysis. Similarly, fluorescamine failed to detect any change in the transbilayer phospholipid distribution soon after the 5 min heating, but it labeled greater amounts of aminophospholipids in the 5-min-heated cells, as compared to normal cells, after incubating them for 4 h at 37 degrees C. These results have been discussed to analyse the role of membrane skeleton in maintaining the erythrocyte membrane phospholipid asymmetry. It has been concluded that both the ATP-dependent aminophospholipid pump and membrane bilayer-skeleton interactions are required to maintain the transbilayer phospholipid asymmetry in native erythrocyte membrane.  相似文献   

14.
The interaction of calmodulin with erythrocyte membrane proteins   总被引:1,自引:0,他引:1  
The method of sedimentation equilibrium in an air-driven ultracentrifuge (Airfuge) has been employed to investigate the interaction of 125I-calmodulin with the cytoskeletal components of the human red cell membrane. The results indicate significant calcium-dependent calmodulin binding activity in the low and high ionic strength extracts of the human erythrocyte membrane. The interaction of 125I-calmodulin with the low ionic strength extract proteins is analysed quantitatively. Further purification of the high ionic strength extract comprising mainly band 2.1 and band 4.1 results in the elution of calmodulin binding activity in a purified fraction of band 4.1.  相似文献   

15.
Peroxisomal matrix proteins are synthesized on free cytosolic ribosomes and posttranslationally imported into the organelle. Translocation of these newly synthesized proteins across the peroxisomal membrane requires the concerted action of many different proteins, the majority of which were already identified. However, not much is known regarding the mechanism, of protein translocation across this membrane system. Here, we discuss recent mechanistic and structural data. These results point to a model in which proteins en route to the peroxisomal matrix are translocated across the organelle membrane by their own receptor in a process that occurs, through a large membrane protein assembly.  相似文献   

16.
17.
In this review, we show how the stability of the asymmetric transverse distribution of phospholipids and the physiological role of the asymmetric distribution can be explained. Experiments with paramagnetic or fluorescent lipids enabled us to show that in fresh red blood cells, i.e. containing ATP, and in resealed ghosts containing ATP (1 mM) the amino derivatives (phosphatidylserine and phosphatidylethanolamine) are selectively transported from the outer monolayer to the inner monolayer of the membranes. On the other hand, phosphatidylcholine and sphingomyelin are not carried and diffuse spontaneously with a very long characteristic time. The ATP-dependent carrier mechanism can be inhibited by protein reacting groups (N-ethyl maleimide and ortho-vanadate), which very probably implies a transmembrane protein specific for amino phospholipids. The affinity for phosphatidylserine seems slightly higher than that for phosphatidylethanolamine. In addition we show the close parallel between the transverse distribution of phospholipids and cell shape. This leads us to suggest that the phospholipid translocation would be used to maintain the natural discoid shape of red blood cells. A possible generalisation of this mechanism to other cells and its implications for endocytosis are discussed.  相似文献   

18.
19.
Treatment of human erythrocyte membranes with active forms of chlorine (hypochlorous acid and chloramine T) resulted in a concentration-dependent inhibition of the membrane Na(+), K(+)- and Mg(2+)-ATPases. Membrane protein thiol group oxidation was consistent with inactivation of enzymes and preceded oxidation of tryptophan residues and chloramine formation. Erythrocyte exposure to hypochlorous acid led to complex changes of cell membrane rigidity and cell morphological transformations: cell swelling, echinocyte formation, and haemolysis. The inhibition of ion pump ATPases of human erythrocyte membranes may be due to direct oxidation of essential residues of enzyme (thiol groups) and structural rearrangement of the membrane.  相似文献   

20.
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号