首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Szendi  F Sweet 《Steroids》1991,56(9):458-463
Pregnenolone 3-(2'-tetrahydropyranyl) ether (1) was condensed with 3,4-[2H]dihydropyran to mainly give (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (20R-3), according to nuclear magnetic resonance (NMR). Cold, dilute HCl in ethanol removed the tetrahydropyranyl group at C-3 and also opened the dihydropyranyl ring at the C-20 position of 20R-3 to give (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol (20R-5). Analogous results were obtained by condensing pregnenolone 3-acetate with 3,4-[2H]dihydropyran to provide (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-acetate (20R-4). Acid-catalyzed opening of the dihydropyranyl ring at C-20 in 20R-4 yielded 20R-7, which, on acetylation followed by crystallization, provided (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol 3,26-diacetate (20R-8), identical to the diacetate made from 20R-5. Varying the reaction sequence beginning with 20(R,S)-4 gave an 84:16 ratio of 20R to 20S in a mixture of 20(R,S)-8, according to NMR analysis. Crystallization of the mixture from methanol provided pure 20R-8. Condensing 2,3-dihydrofuran and 1 for producing (20R)-[5'-(2',3'-dihydrofuranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (6) gave instead (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol 3-(2'-tetrahydropyranyl) ether (20R-9) by partial hydrolysis during workup. Treating 20R-9 briefly with dilute HCl produced (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol (20R-10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Anthocyanidin synthase (ANS), an iron(II) and 2-oxoglutarate (2OG) dependent oxygenase, catalyses the penultimate step in anthocyanin biosynthesis by oxidation of the 2R,3S,4S-cis-leucoanthocyanidins. It has been believed that in vivo the products of ANS are the anthocyanidins. However, in vitro studies on ANS using optically active cis- and trans-leucocyanidin substrates identified cyanidin as only a minor product; instead both quercetin and dihydroquercetin are products with the distribution being dependent on the C-4 stereochemistry of the leucocyanidin substrates.  相似文献   

3.
Synthesis of five novel Delta8(14)-15-ketosterols comprising modified side chains starting from ergosterol is described. Ergosteryl acetate was converted into (22E)-3beta-acetoxy-5alpha-ergosta-8(14),22-dien-15-one through three stages in 32% overall yield; further transformations of the product obtained led to (22E)-3beta-hydroxy-5alpha-ergosta-8(14),22-dien-15-one, (22S,23S)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one, (22R,23R)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one, (22R,23R)-5alpha-ergost-8(14)-en-15-on-3beta,22,23-triol and (22R,23R)-3beta-hydroxy-22,23-isopropylidenedioxy-5alpha-ergost-8(14)-en-15-one. New Delta8(14)-15-ketosterols were evaluated for their cytotoxicity and effects on sterol biosynthesis in human hepatoma Hep G2 cells in comparison with known 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. Among the compounds tested, (22R,23R)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one was found to be the most potent inhibitor of sterol biosynthesis (IC(50)=0.6+/-0.2microM), whereas (22R,23R)-5alpha-ergost-8(14)-en-15-on-3beta,22,23-triol exhibited the highest cytotoxicity (TC(50)=12+/-3microM at a 24h incubation).  相似文献   

4.
从肋果茶(Sladenia celastrifolia)95%乙醇提取物的乙酸乙酯部位中分离得到15个萜类化合物,经波谱学方法分别鉴定为sladeniafolin A(1),grasshopper ketone (2),(3S,5R,6S,7E,9R) -7-megastigmene-3,6,9-triol (3),hedytriol (4),(3S,5R,6R,7E,9R) -3,5,6,9-tetrahydroxy-7-megastigmene(5),1′S*,4′R*-8-(4′-hydroxy-2′,6′,6′-trimethylcyclohex-2-enyl)-6-methyloct-3E,5E,7E-trien -2-one (6),2α,3α,19α,23-tetrahydroxyurs-12-en-28-oic acid (7),2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid(8),pomolic acid(9),3-O-acetyl pomolic acid(10),ursaldehyde (11),camarolide (12),3β-hydroxyurs-11-en-13β(28) -olide (13),3β-hydroxy -11α,12α-epoxy-urs-13β,28-olide (14)和28-0-β-D-glucopyranosyl euscaphic acid (15).以上化合物均首次从该植物中分离得到,其中1为新的C9裂环烯醚萜.  相似文献   

5.
Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.  相似文献   

6.
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.  相似文献   

7.
D F Covey 《Steroids》1979,34(2):199-206
The title compounds have been synthesized for evaluation as potential suicide substrates of 20 alpha- and 20 beta-hydroxysteroid dehydrogenases. Synthesis was achieved by the following route. Acetylenedimagnesium bromide was reacted with 3 beta-hydroxyandrost-4-ene-17 beta-carboxaldehyde to give 17 beta-[(1R,S)-1-hydroxy-2-propynyl] androst-4-en-3 beta-ol. Separation of the R and S diols was achieved by HPLC (high pressure liquid chromatography). Selective oxidation of the 3 beta-hydroxyl group with Jones reagent at 0 degrees gave the title compounds. Further oxidation with Jones reagent converted each acetylenic alcohol to the conjugated acetylenic ketone, 17 beta-(1-oxo-2-propynyl)androst-4-en-3-one.  相似文献   

8.
从陆地革菌(Thelephora terrestris)子实体中分离得到9个已知化合物,经波谱学分析鉴定为:(22E,24R)-麦角甾-7,22-二烯-3β -醇 (1),(22E, 24R)-麦角甾-7, 22-二烯-3β ,5α,6β -三醇 (2),(22E,24R)-麦角甾-4,6,8(14),22-四烯-3-酮 (3),24-亚甲基羊毛甾-8-烯-3β -醇 (4),熊果酸 (5),木栓酮 (6),cerebroside B (7),(2S,3S,4R,2'R)-2-(2'-羟基二十二碳酰氨基)-十八碳烷-1,3,4-三醇 (8),(2S,3S,4R,2'R)-2-(2'-羟基二十三碳酰氨基)-十八碳烷-1,3,4-三醇 (9)。  相似文献   

9.
黄瓜藤的化学成分研究   总被引:1,自引:1,他引:0  
从丽江产黄瓜藤甲醇提取物的氯仿部位分离得到9个化合物,经理化和波谱分析鉴定为α-菠甾醇(1)、α-菠甾醇-3-O-β-D-葡萄糖苷(2)、β-谷甾醇(β-sitosterol,3)、豆甾-7-烯-3-O-β-D-葡萄糖苷(4)、22-亚甲基-9,19-环羊毛甾烷-3β-醇(5)、(2S,3S,4R,10E)-2-(2′,3′-二羟基二十四烷酰氨基)-10-十八烯-1,3,4-三醇(6)、(2S,3S,4R,10E)-2-[(2′R)-2-羟基二十四烷酰氨基]-10-十八烯-1,3,4-三醇(7)、(2S,3S,4R,10E)-1-(β-D-葡萄糖苷)-2-[(2′R)-2-羟基二十四烷酰氨基]-10-十八烯-1,3,4-三醇(8)、大豆脑苷(9),除化合物3外,其它化合物均为首次从该植物中分离得到.  相似文献   

10.
In the conversion from colorless leucoanthocyanidin to colored anthocyanidin 3-glucoside, at least two enzymes, anthocyanidin synthase (ANS) and UDP-glucose:flavonoid 3-O-glucosyltransferase (3-GT), are postulated to be involved. Despite the importance of this reaction sequence for coloring in anthocyanin biosynthesis, the biochemical reaction mechanism has not been clarified, and the possible involvement of a dehydratase has not been excluded. Here we show that recombinant ANSs from several model plant species, snapdragon, petunia, torenia, and maize, catalyze the formation of anthocyanidin in vitro through a 2-oxoglutarate-dependent oxidation of leucoanthocyanidin. Crude extracts of Escherichia coli, expressing recombinant ANSs from these plant species, and purified recombinant enzymes of petunia and maize catalyzed the formation of anthocyanidin in the presence of ferrous ion, 2-oxoglutarate, and ascorbate. The in vitro formation of colored cyanidin 3-glucoside from leucocyanidin, via a cyanidin intermediate, was demonstrated using petunia ANS and 3-GT. The entire reaction sequence did not require any additional dehydratase but was dependent on moderate acidic pH conditions following the enzymatic steps. The present study indicated that the in vivo cytosolic reaction sequence involves an ANS-catalyzed 2-oxoglutarate-dependent conversion of leucoanthocyanidin (flavan-3,4-cis-diol) to 3-flaven-2,3-diol (pseudobase), most probably through 2,3-desaturation and isomerization, followed by glucosylation at the C-3 position by 3-GT.  相似文献   

11.
alpha-Ecdysone (2beta,3beta,14alpha,22R,25-pentahydroxy-5beta-cholest-7-en-6-one) has been identified as the metabolism product of 3beta,14alpha-dihydroxy-5beta-cholest-7-en-6-one in isolated prothoracic glands of the tobacco hornworm, Manduca sexta. In contrast, 3beta-hydroxy-5beta-cholest-7-en-6-one is metabolized to 14-deoxy-alpha-ecdysone and a variety of intermediates all lacking the 14-hydroxy group. The results suggest that either the normal precursor for the synthesis of alpha-ecdysone by prothoracic glands is a sterol more highly oxygenated than cholesterol or that hydroxylation of a minimally oxygenated precursor at C-14 must precede introduction of the C-6 ketone and/or delta7 bond. The data further suggest that several alternative hydroxylation routes may exist for the latter steps of alpha-ecdysone biosynthesis.  相似文献   

12.
Slade D  Ferreira D  Marais JP 《Phytochemistry》2005,66(18):2177-2215
Circular dichroism is a powerful tool for establishing the absolute configuration of flavonoids and proanthocyanidin analogues. It has been utilized to study the configuration of flavanones, dihydroflavonols (3-hydroxyflavanones), flavan-3-ols, flavan-4-ols, flavan-3,4-diols, flavans, isoflavans, isoflavanones, pterocarpans, 6a-hydroxypterocarpans, rotenoids, 12a-hydroxyrotenoids, neoflavonoids, 3,4-dihydro-4-arylcoumarins, 4-arylflavan-3-ols, auronols, homoisoflavanones, proanthocyanidins, and various classes of biflavonoids. Results relevant to the correlation of circular dichroic data and the absolute configuration of the diastereoisomers of some of the above classes of compounds will be discussed.  相似文献   

13.
Ferreira D  Marais JP  Slade D 《Phytochemistry》2005,66(18):2216-2237
The proanthocyanidin pool in the floral kingdom usually involves the presence of carbon-carbon bonds linking predominantly flavan-3-ol constituent moieties. Such an ensemble of flavan-3-ol units originates via electrophilic aromatic substitution of flavan-4-yl carbocations (or their equivalents) derived from flavan-4-ols and/or flavan-3,4-diols and the nucleophilic centers of the m-oxygenated A-rings of flavan-3-ol nucleophiles. In the absence of these potent flavan-3-ol nucleophiles with their aptitude for the formation of carbon-carbon bonds, alternative centers emerge as participants in interflavanyl bond formation. Such a phenomenon is demonstrated for the distribution of various profisetinidin-, prorobinetinidin-, proguibourtinidin-, promelacacinidin- and proteracacinidin-type pro- and leuco-anthocyanidins in several southern hemisphere heartwood species.  相似文献   

14.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   

15.
The sesquiterpenoid ketone, 1,4,4-trimethyltricyclo[5.4.0.0(3.5)]undec-7-en-9-one (1), was subjected to microbial transformation by six fungal strains: Aspergillus niger ATCC 9142, Aspergillus ochraceus DSM 824, Beauveria bassiana ATCC 7159, Cunninghamella echinulata ATCC 9244, Rhizopus arrhizus ATCC 11.145, and Absidia blakesleeana ATCC 10.148. Four main metabolites were formed from 1: 10(R)- and 10(S)-hydroxy-1,4,4-trimethyltricyclo-[5.4.0.0(3.5)]undec-7- en- 9-one (2 and 3, respectively), besides 4(R)- and 4(S)-(hydroxymethyl)-1,4-dimethyltricyclo[5.4.0.0(3.5)]undec -7-en-9-one (4 and 5, respectively). Compounds 2-5 were isolated with varying percentages from the respective transformations, and their structures established unequivocally by a combination of spectroscopic methods. Metabolites 2 and 3 are products of hydroxylation at C-10, in either R- or S-position; in 4 and 5, one geminal CH3 group each on the cyclopropane ring has been transformed into a CH2OH function.  相似文献   

16.
(2S,3R,4R,5S,6R)-2-Aryl-5,5-difluoro-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols and (2S,3R,4R,5S,6R)-2-aryl-5-fluoro-5-methyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols were discovered as dual inhibitors of sodium glucose co-transporter proteins (e.g. SGLT1 and SGLT2) through rational drug design, efficient synthesis, and in vitro and in vivo evaluation. Compound 6g demonstrated potent dual inhibitory activities (IC50 = 96 nM for SGLT1 and IC50 = 1.3 nM for SGLT2). It showed robust inhibition of blood glucose excursion in an oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats when dosed at both 1 mg/kg and 10 mg/kg orally. It also demonstrated postprandial glucose control in db/db mice when dosed orally at 10 mg/kg.  相似文献   

17.
1. Diacetates of the four possible racemates of 4′,7-dimethoxyflavan-3,4-diol have been synthesized. 2. Comparison of their nuclear-magnetic-resonance spectra and the ionophoretic mobilities of the diols in borate buffer with those of the corresponding derivatives of guibourtacacidin shows that the natural 4′,7-dihydroxyflavan-3,4-diol has a 2,3-cis–3,4-trans configuration, but is accompanied by 2,3-trans–3,4-trans and 2,3-trans–3,4-cis isomers. These occur in the approximate proportions 5:1:1. 3. The occurrence of guibourtacacidins in Guibourtia coleosperma appears to be of taxonomic significance. Their association with a large excess of related tannins in the heartwood suggests that flavan-3,4-diols with these configurations are suitable precursors in tannin biosynthesis.  相似文献   

18.
从尼泊尔水东哥树皮的95%乙醇提取物中首次分离到12个化合物,应用波谱方法或与已知品对照的手段鉴定为auranamide(1)、aurantiamide benzoate(2)、齐墩果酸(3)、β-谷甾醇(4)、β-胡萝卜甙(5)、乌苏酸(6)、2α,3α-二羟基-12-烯-28-乌苏酸(7)、2α,3β,24-三羟基-12-烯-28-乌苏酸(8)、(2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol(9)、2α,3α,24-三羟基-12-烯-28-齐墩果酸(10)、2α,3β-二羟基-12-烯-28-乌苏酸(11)和2α,3α,24-三羟基-12-烯-28-乌苏酸(12)。  相似文献   

19.
The effects of 3-substituted Delta8(14)-15-ketosterols--3beta-(2-hydroxyethoxy)-, 3beta-(2-propenyloxy)-, 3beta-[2(R,S),2,3-oxidopropyloxy]-, 3beta-[2(R,S),2,3-dihydroxypropyloxy]-, 3beta-(2-oxoethoxy)-, 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]-, and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes--on cholesterol metabolism were studied in human hepatoma Hep G2 cells. 3beta-(2-Propenyloxy)-, 3beta-(2-oxoethoxy)-, and 3beta-[2(R,S),2, 3-oxidopropyloxy]-5alpha-cholest-8(14)-en-15-ones inhibited cholesterol biosynthesis without any effect on triglyceride biosynthesis, while 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]- and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes inhibited both cholesterol biosynthesis and triglyceride biosynthesis at concentrations exceeding 10 microM. 3beta-[2(R,S),2, 3-Dihydroxypropyloxy]-5alpha-cholest-8(14)-en-15-one, effectively inhibiting cholesterol biosynthesis, was found also to be toxic in Hep G2 cells at micromolar concentrations. 3beta-[2(R,S),2, 3-Oxidopropyloxy]-5alpha-cholest-8(14)-en-15-one effectively inhibited cholesterol acylation. All the tested compounds decreased the HMG-CoA reductase mRNA level at concentrations exceeding 10 microM; however, they did not affect the LDL receptor mRNA level. Among the compounds tested, only 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one decreased the uptake and internalization of LDL-associated cholesteryl esters, being as effective as 25-hydroxycholesterol.  相似文献   

20.
Anthocyanidins were proposed to derive from (+)-naringenin via (2R,3R)-dihydroflavonol(s) and (2R,3S,4S)-leucocyanidin(s) which are eventually oxidized by anthocyanidin synthase (ANS). Recently, the role of ANS has been put into question, because the recombinant enzyme from Arabidopsis exhibited primarily flavonol synthase (FLS) activity with negligible ANS activity. This and other studies led to the proposal that ANS as well as FLS may select for dihydroflavonoid substrates carrying a "beta-face" C-3 hydroxyl group and initially form the 3-geminal diol by "alpha-face" hydroxylation. Assays with recombinant ANS from Gerbera hybrida fully supported the proposal and were extended to catechin and epicatechin isomers as potential substrates to delineate the enzyme specificity. Gerbera ANS converted (+)-catechin to two major and one minor product, whereas ent(-)-catechin (2S,3R-trans-catechin), (-)-epicatechin, ent(+)-epicatechin (2S,3S-cis-epicatechin) and (-)-gallocatechin were not accepted. The K(m) value for (+)-catechin was determined at 175 microM, and the products were identified by LC-MS(n) and NMR as the 4,4-dimer of oxidized (+)-catechin (93%), cyanidin (7%) and quercetin (trace). When these incubations were repeated in the presence of UDP-glucose:flavonoid 3-O-glucosyltransferase from Fragariaxananassa (FaGT1), the product ratio shifted to cyanidin 3-O-glucoside (60%), cyanidin (14%) and dimeric oxidized (+)-catechin (26%) at an overall equivalent rate of conversion. The data appear to identify (+)-catechin as another substrate of ANS in vivo and shed new light on the mechanism of its catalysis. Moreover, the enzymatic dimerization of catechin monomers is reported for the first time suggesting a role for ANS beyond the oxidation of leucocyanidins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号