首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061–2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios—optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)—using three General Circulation Models, for the period 2061–2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: “winners”—mostly late‐successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; “losers”—mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species—Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as “winners.” Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation.  相似文献   

2.
3.
Aim To evaluate the ability of species distribution models (SDMs) to predict the spatial structure of tree species within their geographical ranges (how trees are distributed within their ranges). Location Continental Spain. Methods We used an extensive dataset consisting of c. 90,000 plots (1 plot km?2) where presence/absence data for 23 common Mediterranean and Atlantic tree species had been surveyed. We first generated SDMs relating the presence or absence of each species to a set of 16 environmental predictors, following a stepwise modelling process based on maximum likelihood methods. Superimposing spatial correlograms generated from the predictions of the SDMs over those generated from the raw data allowed a model–observation comparison of the nature, scale and intensity (level of aggregation) of spatial structure with the species ranges. Results SDMs predicted accurately the nature and scale of the spatial structure of trees. However, for most species, the observed intensity of spatial structure (level of aggregation of species in space) was substantially greater than that predicted by the SDMs. On average, the intensity of spatial aggregation was twice that predicted by SDMs. In addition, we also found a negative correlation between intensity of aggregation and species range size. Main conclusions Standard SDM predictions of spatial structure patterns differ among species. SDMs are apparently able to reproduce both the scale and intensity of species spatial structure within their ranges. However, one or more missing processes not included in SDMs results in species being substantially more aggregated in space than can be captured by the SDMs. This result adds to recent calls for a new generation of more biologically realistic SDMs. In particular, future SDMs should incorporate ecological processes that are likely to increase the intensity of spatial aggregation, such as source–sink dynamics, fine‐scale environmental heterogeneity and disequilibrium.  相似文献   

4.
5.
The relationship between seed germination and ecological niche is determined by matching germination characteristics with environmental features. In this study, we selected tree species occurring in the largest savanna wetland in South America – the Pantanal. Very few species are endemic or exclusively found in savanna wetlands, and the majority of tree species occurring in the Pantanal are also found in the neighbouring Brazilian Cerrado, a drier vegetation type that does not flood. We investigated the relationship between germination characteristics and occurrence of savanna trees in wetlands testing the hypothesis that such seeds are tolerant to flooding. We also addressed the question of whether seed tolerance to flood, assessed by survival analysis, explains tree distribution along a gradient of flooding intensity. In this flooding gradient, widely distributed species are those that occur in areas subjected to low as well as to high flooding intensity whereas restricted distributed species are those that occur only in areas subjected to a low level of flood. Seeds from tree species occurring in areas subjected to different flooding intensities were collected. Seed tolerance and germination during and after both one and two months of simulated flood were evaluated. Our results show that seeds of most of the studied savanna species tolerated submergence, which helps to explain their occurrence and wide distribution in wetlands. Nevertheless, germination behaviour checked by survival functions (i.e. how germination is distributed over time) partially explained tree species distribution along a flooding gradient. We conclude that seed tolerance to flooding is one of the components of the regeneration niche that determines tree occurrence and distribution at the regional scale, from savanna to wetland, but not at a local scale along a flooding gradient.  相似文献   

6.
Understanding how genetic variation within a foundation species determines the structure of associated communities and ecosystem processes has been an emerging frontier in ecology. Previous studies in common gardens identified close links between intraspecific variation and multispecies community structure, and these findings are now being evaluated directly in the complex natural ecosystem. In this study, we examined to what extent genomic variation in a foundation tree species explains the structure of associated arthropod communities in the field, comparing with spatial, temporal and environmental factors. In a continuous mixed forest, arthropods were surveyed on 85 mature alders (Alnus hirsuta) in 2 years. Moreover, we estimated Nei's genetic distance among the alders based on 1,077 single nucleotide polymorphisms obtained from restricted‐site‐associated DNA sequencing of the alders’ genome. In both years, we detected significant correlations between genetic distance and dissimilarity of arthropod communities. A generalized dissimilarity modelling indicated that the genetic distance of alder populations was the most important predictor to explain the variance of arthropod communities. Among arthropod functional groups, carnivores were consistently correlated with genetic distance of the foundation species in both years. Furthermore, the extent of year‐to‐year changes in arthropod communities was more similar between more genetically closed alder populations. This study demonstrates that the genetic similarity rule would be primarily prominent in community assembly of plant‐associated arthropods under temporally and spatially variable environments in the field.  相似文献   

7.
The two most important components of biodiversity, species diversity and genetic diversity, have generally been treated as separate topics, although a coordination between both components is believed to be critical for ecosystem stability and resilience. Based on a new trait concept that allows for the assessment of genetic diversity across species, the relationship between species diversity and genetic diversity was examined in eight forest tree communities composed of different tree genera including both climax and pioneer species. It was intended to check whether a trade-off exists between the two diversity components as was found in a few studies on animal species.Using several isozyme-gene systems as genetic markers, the genetic diversity across species within each of the tree communities was determined by two measures, the commonly used intraspecific genetic diversity averaged over species and the recently developed transspecific genetic diversity per species. Both data sets were compared with the corresponding community-specific species diversity resulting in a positive relationship between the two diversity components. A statistically significant positive correlation was established between the transspecific genetic diversity per species and the species diversity for three isozyme-gene systems. Beyond that, consistent results were obtained using different parameters of the diversity measure which characterize the total, the effective and the number of prevalent variants. The number of prevalent variants reflected most significantly the non-randomness of the observed diversity patterns.These findings can be explained by the observation that the pioneer tree species reveal a by far higher genetic diversity than the climax tree species, which means that an increase in species diversity, due to the addition of several pioneer species at the expense of one or two climax species, goes along with an increase in the level of genetic diversity. Forest tree communities with the highest degree of species diversity exhibit therefore the highest transspecific genetic diversity per species. This result was discussed with regard to the particular composition and stability of forest tree communities.  相似文献   

8.
Frugivorous species heavily depend on patchy food resources and are believed to track these in space and time, thereby providing an important seed dispersal function that might be critical toward the regeneration of fruiting plants. However, isolation of suitable food patches due to habitat fragmentation or changes in landscape connectivity may hamper food tracking behaviour and adversely affect populations of both frugivores (through starvation) and food plants (through interruption of seed dispersal). We here test whether density fluctuations in four frugivorous Afrotropical bird species were larger and/or matched fluctuations in ripe fruit densities better in study plots embedded in large tracts of indigenous forest than in equally-sized plots embedded in cultivated lands. We compared these results with those of four non-frugivorous species (out-group) which were not expected to track fruit resources. Whereas densities of both frugivores and fruit crops strongly fluctuated in space and time, these fluctuations were not synchronised, nor did the level of synchrony differ in relation to matrix type. For some but not all bird species, lower densities and smaller temporal fluctuations in forest plots surrounded by cultivation may reflect decreased mobility. The observed fluctuations in bird densities most likely reflect exchange with the surrounding landscape matrix, suggesting that small pockets of fruiting trees in farmland may comprise critical food resources for frugivores inhabiting highly fragmented landscapes, apart from increasing connectivity for both bird and seed dispersal.  相似文献   

9.
How context dependent are species interactions?   总被引:1,自引:0,他引:1  
The net effects of interspecific species interactions on individuals and populations vary in both sign (?, 0, +) and magnitude (strong to weak). Interaction outcomes are context‐dependent when the sign and/or magnitude change as a function of the biotic or abiotic context. While context dependency appears to be common, its distribution in nature is poorly described. Here, we used meta‐analysis to quantify variation in species interaction outcomes (competition, mutualism, or predation) for 247 published articles. Contrary to our expectations, variation in the magnitude of effect sizes did not differ among species interactions, and while mutualism was most likely to change sign across contexts (and predation least likely), mutualism did not strongly differ from competition. Both the magnitude and sign of species interactions varied the most along spatial and abiotic gradients, and least as a function of the presence/absence of a third species. However, the degree of context dependency across these context types was not consistent among mutualism, competition and predation studies. Surprisingly, study location and ecosystem type varied in the degree of context dependency, with laboratory studies showing the highest variation in outcomes. We urge that studying context dependency per se, rather than focusing only on mean outcomes, can provide a general method for describing patterns of variation in nature.  相似文献   

10.
While wetlands have been converted into farmlands, large amounts of farmlands are now being abandoned, and this novel habitat is expected to be inhabited by species which depend on wetlands. Here we examined the effects of habitat and landscape variables on the densities of wetland bird species in abandoned farmlands. We surveyed birds in abandoned farmlands with different patch area, habitat, and landscape variables in Kushiro district, eastern Hokkaido, northern Japan. We also surveyed birds in 15 ha of the remaining wetlands as a reference habitat. We used abundance-based hierarchical community models (HCMs) to estimate patch-level estimates of abundance of each species based on sampling plots data that only partially covered the studied patches. We observed 14 wetland species and analyzed them with HCMs. Abandoned farmland patch areas had significant positive effects on the densities of two species. Tree densities and shrub coverage exerted positive and negative effects on some species. Amounts of surrounding wetland/grassland had positive effects on many species. Ensemble of species-level models suggested that 24.7 and 10.6 ha of abandoned farmlands would be needed to harbor a comparable total abundance and species richness in 15-ha wetlands, respectively. These required amounts can be increased/decreased depending on the covariates. The use of HCMs allows us to predict species- and community-level responses under varied conditions based on incomplete sampling data. A quantity of 1.6 times larger areas of abandoned farmlands may be required to restore wetland bird communities in eastern Hokkaido.  相似文献   

11.
There is evidence for the existence of varying degrees of host preference in vascular epiphytes; certain tree species can be positively, neutrally, or negatively associated with epiphytes. The objective of this study was to evaluate whether tree species of the cloud forest differ in their suitability as a substrate for epiphytic bromeliads. To evaluate the association between epiphytic bromeliad cover and host tree species, we sampled 62 plots (each of 200 m2) in four cloud forest fragments in Veracruz, Mexico. For all trees ≥10 cm in diameter at breast height (DBH), we recorded species name, DBH, and percentage cover of bromeliads in categories of tree coverage. In total, 587 trees belonging to 52 species were recorded. All of the 10 tree species used to assess differences in epiphyte cover (each with a minimum of nine individuals) supported bromeliads, but mean bromeliad cover differed significantly among the tree species. The tree species that concentrated the highest bromeliad cover were Quercus sartorii (29.86%) and Liquidambar styraciflua (21.72%). Our results indicate that, while none of the tree species analyzed was a limiting host for epiphytic bromeliads in general, varying levels of bromeliad cover occur depending on the host species in tropical montane cloud forest fragments suggesting that certain tree species are better hosts than others. The implications for conservation efforts of differential tree species suitability as epiphyte hosts are discussed.  相似文献   

12.
Concerns about the impact of species diversity loss has heightened the importance of determining what limits local diversity and the relative roles of the available species pool and local interactions. Recent theory suggests that local diversity may exhibit linear or asymptotic responses to regional variation in species pools depending resource supply rates. We tested this idea by augmenting species pools in three sites along a natural productivity gradient (a surrogate for resource supply) in a mid-successional old-field. Augmentation of the species pool, enhanced local diversity more at medium than low productivity sites in this field and seed addition had no effect at high productivity, suggesting that diversity was saturated in high resource areas of this field. These results suggest that resource supply rates may mediate species pool-richness relationships. Species additions into cleared plots demonstrated that the observed differences in species recruitment along this gradient were largely driven by abiotic filtering at low and competitive filtering at high productivity. Furthermore, we observed that augmentation of the species pool shifted the productivity–diversity relationship from a negative linear to unimodal suggesting that species pools may influence reported productivity–diversity patterns.  相似文献   

13.
The assumptions on the host specificity of beetles that led Terry Erwin to suggest that there may be over 30 million arthropod species were tested for 10 species of trees and their insect associates at a rainforest site in Papua New Guinea. The data included 391 species and 4696 individuals of herbivorous beetles collected during a one year period using hand collecting, beating, branch clipping, intercept flight traps and pyrethrum knockdown. Insect host specificity was assessed by feeding trials in captivity. The data suggest that between 23 and 37 monophagous leaf-feeding species are most likely to be present in this system, whereas Erwin's method yields an estimate of 138 monophagous species. The major factors responsible for the discrepancy between our observations and Erwin's assumptions appears to be (a) the importance of transient species; (b) the insect fauna that is shared among tree species; (c) some generalist wood-eating species may inflate the apparent species richness of leaf-feeding beetles; and (d) the proportion of specialist species varies significantly among tree species. We conclude that studies reporting the proportion of specialist insect herbivores associated with particular tropical tree species will yield only a portion of the information needed to estimate global arthropod species richness, but may be useful for elucidating certain aspects of food-web ecology in tropical rain forests.  相似文献   

14.
Lopez OR  Kursar TA 《Oecologia》2003,136(2):193-204
In the tropics, seasonally flooded forests (SFF) harbor fewer tree species than terra firme (i.e. non-flooded) forests. The low species diversity of tropical flooded forests has been ascribed to the paucity of species with adaptations to tolerate flooding. To test the hypothesis that flooding is the only factor restricting most species from SFF, we compared plant morphological and physiological responses to flooding in 2-month old seedlings of 6 species common to SFF and 12 species common to terra firme forests. Although flooding impaired growth, total biomass, maximum root length and stomatal conductance in most species, responses varied greatly and were species-specific. For example, after 90 days, flooding reduced leaf area growth by 10-50% in all species, except in Tabebuia, a common species from non-flooded habitats. Similarly, flooding had a 5-45% negative effect on total biomass for all species, except in 1 SFF and 1 terra firme species both of which had more biomass under flooding. A principal component analysis, using the above responses to flooding, provided no evidence that SFF and terra firme species differed in their responses to flooding. Flooding also caused reductions in root growth for most species. Rooting depth and root: shoot ratios were significantly less affected by flooding in SFF than in terra firme species. Although flood tolerance is critical for survival in flooded habitats, we hypothesize that responses to post-flooding events such as drought might be equally important in seasonal habitats. Therefore, we suggest that the ability to grow roots under anoxia might be critical in predicting success in inundated habitats that also experience a strong dry season.  相似文献   

15.
Summary The variability of monogenean gill ectoparasite species richness in 19 West African cyprinid species was analyzed using the following seven predictor variables: host size, number of drainage basins, number of sympatric cyprinid species, host diversity, association with mainland forest, host ecology, and monogenean biological labelling. The size of the host species accounted for 77% of the variation in the number of parasite species per host, and host ecology an additional 8%. Together the effects of host size and host ecology accounted for 85% of the variation in monogenean species richness. This study shows that the deciding factors for explaining monogenean species richness in West African cyprinid fishes are host species size and host ecology. These results were compared with main factors responsible for parasite species richness in fish communities. Other possible explanations of monogenean community structure in west African cyprinids are discussed.  相似文献   

16.
Understanding the patterns of species richness and their environmental drivers, remains a central theme in ecological research and especially in the continental scales where many conservation decisions are made. Here, we analyzed the patterns of species richness from amphibians, reptiles and mammals at the EU level. We used two different data sources for each taxon: expert-drawn species range maps, and presence/absence atlases. As environmental drivers, we considered climate and land cover. Land cover is increasingly the focus of research, but there still is no consensus on how to classify land cover to distinct habitat classes, so we analyzed the CORINE land cover data with three different levels of thematic resolution (resolution of classification scheme ˗ less to more detailed). We found that the two types of species richness data explored in this study yielded different richness maps. Although, we expected expert-drawn range based estimates of species richness to exceed those from atlas data (due to the assumption that species are present in all locations throughout their region), we found that in many cases the opposite is true (the extreme case is the reptiles where more than half of the atlas based estimates were greater than the expert-drawn range based estimates). Also, we detected contrasting information on the richness drivers of biodiversity patterns depending on the dataset used. For atlas based richness estimates, landscape attributes played more important role than climate while for expert-drawn range based richness estimates climatic variables were more important (for the ectothermic amphibians and reptiles). Finally we found that the thematic resolution of the land cover classification scheme, also played a role in quantifying the effect of land cover diversity, with more detailed thematic resolution increasing the relative contribution of landscape attributes in predicting species richness.  相似文献   

17.
18.
A mid-altitudinal peak in species richness is commonly observed and the mass effect (or source–sink effect) has been suggested as a possible cause. We test the importance of the mass effect for generating altitudinal patterns of plant species richness at two grain sizes using a simple estimate of sterility/fertility to indicate sinks and sources. To do this we identified species with fertile specimens (fertile species) and species with only sterile specimens (sterile species) in each sampling unit along altitudinal transects and assumed that the number of sterile species indicated the relative number of sink species, correspondingly that the number of fertile species indicated the relative number of source species when looking at the overall pattern of species richness along a transect. To evaluate this approach, we investigated the distribution of sterility and fertility of each species along the altitudinal transects. We found that sterile species are found more often at the edges and fertile species more often in the centre of the species altitudinal ranges than expected by chance. Using a fine grain, sterile species richness had a humped altitudinal pattern on all transects investigated at this scale, whereas using a coarse grain two of the three transects investigated had a humped pattern. At the fine grain, sterile species richness had a more pronounced peak than fertile species richness in two of the three transects investigated supporting the hypothesis of the mass effect, but this pattern did not persist at coarser grain. The observations at the fine grain are in accordance with the idea that the mass effect is important in shaping the mid-altitudinal peak in species richness, whereas the observations from the coarser grain are ambiguous.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号