首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new cluster Li[Fe331-SCCFc)(CO)9] reacts with ClAuPPh3 to afford compound [Fe3Au(μ42-CCFc)(CO)9(PPh3)], which exhibits an isomeric equilibrium in solution with the cluster [Fe3Au(μ32-CCFc)(CO)9(PPh3)].The rupture of C-S bonds in the thioethers Me3SiCCSCCR (R = Fc, SiiPr3) in the presence of Fe3(CO)12, yields to the clusters [Fe3(μ-SCCSiiPr3)(μ-CCSiMe3)(CO)9] and [Fe3(μ,η2-(SiiPr3)CCCCSiMe3)(μ3-S)(CO)9] together with the unexpected compounds [Fe2(μ-SCC(H)R)(CO)6] (R = SiMe3, SiiPr3).Additionally, the dinuclear derivatives [Fe2(μ-SCCR)(μ-CCR′)(CO)6] (R = Fc, R′ = SiMe3; R = SiMe3, R′ = Fc; R = SiMe3; R′ = SiiPr3) have also been obtained. These compounds have been spectroscopically characterized and the crystal structure of some of them has been solved.  相似文献   

2.
The complex [Ru(CCCN)(dppe)Cp*] (1) is readily obtained (ca. 70%) from the sequential reaction of [Ru(CCH2)(dppe)Cp*]PF6 with nBuLi and phenyl cyanate. The complex behaves as a typical transition metal acetylide upon reaction with tetracyanoethene, affording a metallated pentacyanobutadiene. Complex 1 is a useful metalloligand, and its reactions with [W(thf)(CO)5], [RuCl(PPh3)2Cp], [RuCl(dppe)Cp*] or cis-[RuCl2(dppe)2] all afforded products featuring the M-CCCN-M′ motif, for which ground state structures indicate a degree of polarisation. Electrochemical and spectroelectrochemical studies reveal moderate interactions between the metal centres in the 35-electron dications [{Cp*(dppe)Ru}(μ-CCCN){RuL2Cp′}]2+ (RuL2Cp′ = Ru(PPh3)2Cp, Ru(dppe)Cp*).  相似文献   

3.
A new cumulene diiron complex related to the Fe-only hydrogenase active site [(μ-SCH2C(S)CCH2)Fe2(CO)6] (1) was obtained by treatment of (μ-LiS)2Fe2(CO)6 with excess 1,4-dichloro-2-butyne. By controllable CO displacement of 1 with PPh3 and bis(diphenylphosphino)methane (dppm), mono- and di-substituted complexes, namely [(μ-SCH2C(S)CCH2)Fe2(CO)5L] (2: L = PPh3; 3: L = dppm) and [(μ-SCH2C(S)CCH2)Fe2(CO)4L2] (4: L = PPh3; 5: L = dppm) could be prepared in moderate yields. Treatment of 1 with bis(diphenylphosphino)ethane (dppe) afforded a double butterfly complex [(μ-SCH2C(S)CCH2)Fe2(CO)5]2(μ-dppe) (7). With dppm in refluxing toluene, a dppm-bridged complex [(μ-SCH2C(S)CCH2)Fe2(CO)4(μ-dppm)] (6) was obtained. These model complexes were characterized by IR, 1H, 31P NMR spectra and the molecular structures of 1, 2 and 5-7 were determined by single crystal X-ray analyses. The electrochemistry of 1-3 was studied and the electrocatalytic property of 1 was investigated for proton reduction in the presence of HOAc.  相似文献   

4.
5.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

6.
Combining fac-[Re(CO)3Cl] with components of the ligand redox system bmtz/bmtz/H2bmtz/H2bmtz (bmtz=3,6-bis(2-pyrimidyl)-1,2,4,5-tetrazine) has led to the isolation of the complexes (H2bmtz)Re(CO)3Cl, (μ-H2bmtz)[Re(CO)3Cl]2 and (μ-bmtz)[Re(CO)3Cl]2. Other species characterized were (bmtz)Re(CO)3Cl (UV/Vis, IR), [(H2bmtz)Re(CO)3Cl] (UV/Vis, IR, EPR), {(μ-H2bmtz)[Re(CO)3Cl]2} (UV/Vis, IR, EPR) and {(μ-bmtz)[Re(CO)3Cl]2} (UV/Vis, IR, X band and high-field EPR). The results confirm bmtz as very strong and H2bmtz as moderate π acceptor ligand versus one or two chelate-bonded low-valent metal centers. Reactivity is observed in terms of oxidative proton and reductive chloride dissociation.  相似文献   

7.
8.
The reactions of a dioxotetraamine Cu(II) complex [Cu(H−2L)] (L is 6-(9-fluorenyl)-1,4,8,11-tetraazaandencane-5,7-dione)with O2 − were investigated by electrochemistry, UV-Vis spectrophotometry and pulse radiolysis, respectively. In DMSO solution, [CuII(H−2L)] was oxidized into [CuIII(H−2L)]+ by O2 −, a consecutive reaction was observed with [CuIII(H−2L)(O2 2−)] − as intermediates (k1=1.71×103 M−1 s−1, k2=1.2×10−2 s−1). The mechanism of O2 − dismutation catalyzed by the complex involved alternate oxidation and reduction of Cu(II) by O2 − and the kcat is 6.07 × 107 M−1 s−1 (pH 7.4).  相似文献   

9.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

10.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

11.
12.
The μ-phosphinidene complexes [Mn2(CO)8{μ-P(TMP)}] (1) (TMP = tetramethylpiperidyl) and [Mn2(CO)8{μ-P(NiPr2)}] (2) react with elemental sulfur to form rare phosphinidene sulfide complexes [Mn2(CO)9{μ-η12-P(TMP)S}] (3) and [Mn2(CO)8{μ-η12-P(NiPr2)S}] (4), respectively. Photolysis of 3 results in the unprecedented conversion to [Mn2(CO)6(μ-{κPκ2S}2-(TMP)(S)P-P(S)(TMP)] (5), which contains a novel 10-electron donor diphosphene disulfide ligand (TMP)(S)P-P(S)(TMP).  相似文献   

13.
The electron transport chain of mitochondria is a major source of reactive oxygen species (ROS), which play a critical role in augmenting the Ca2+-induced mitochondrial permeability transition (MPT). Mitochondrial release of superoxide anions (O2) from the intermembrane space (IMS) to the cytosol is mediated by voltage dependent anion channels (VDAC) in the outer membrane. Here, we examined whether closure of VDAC increases intramitochondrial oxidative stress by blocking efflux of O2 from the IMS and sensitizing to the Ca2+-induced MPT. Treatment of isolated rat liver mitochondria with 5 μM G3139, an 18-mer phosphorothioate blocker of VDAC, accelerated onset of the MPT by 6.8 ± 1.4 min within a range of 100-250 μM Ca2+. G3139-mediated acceleration of the MPT was reversed by 20 μM butylated hydroxytoluene, a water soluble antioxidant. Pre-treatment of mitochondria with G3139 also increased accumulation of O2 in mitochondria, as monitored by dihydroethidium fluorescence, and permeabilization of the mitochondrial outer membrane with digitonin reversed the effect of G3139 on O2 accumulation. Mathematical modeling of generation and turnover of O2 within the IMS indicated that closure of VDAC produces a 1.55-fold increase in the steady-state level of mitochondrial O2. In conclusion, closure of VDAC appears to impede the efflux of superoxide anions from the IMS, resulting in an increased steady-state level of O2, which causes an internal oxidative stress and sensitizes mitochondria toward the Ca2+-induced MPT.  相似文献   

14.
The hydroxyl radical (OH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on OH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of OH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber-Weiss-like system was also employed to generate OH, so that the effect of iron sequestration could be distinguished from direct OH radical scavenging. In the latter system, the rank order of OH scavenging activity was F16BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.  相似文献   

15.
Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe+4O center of either Compound I (Fe+4O, porph+) or Compound ES (Fe+4O, Trp+). R48A/W191F formed a Fe+2O2 complex upon photolysis of Fe+2CO in the presence of O2, and N-hydroxyguanidine was observed to react with this species to produce products, distinct from N-nitrosoguanidine, that gave a positive Griess reaction for nitrate + nitrite, a positive Berthelot reaction for urea, and no evidence for formation of NO. It is proposed that HNO and urea are produced in analogy with reactions of nitric oxide synthase in the pterin-free state.  相似文献   

16.
17.
The iridium 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) complexes [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(NCMe)]BF4 (2-NCMe, R = CO2Me) and [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(CO)]BF4 (2-CO, R = CO2Me) serve as models for proposed iridium-vinylidene intermediates of relevance to the [2 + 2 + 1] cyclotrimerization of alkynes. The solid-state structures of 2-NCMe, 2-CO, and [κ2(C1,C4)-CRCRCRCR]{CH3C(CH2PPh2)3}Ir(Cl) (2-Cl), were determined by X-ray crystallography.  相似文献   

18.
Reaction of Mo(CO)4(NCCH3)2 and 7-aza-2-tosylnorbornadiene (7-azaNBD) yielded five air-stable Mo complexes. One is Mo(CO)44-7-azaNBD), in which the molybdenum atom is chelated by the two π-bonds of 7-azaNBD. The other four are isomers of Mo(CO)22-7-azaNBD)2, in which the molybdenum atoms are chelated by the nitrogen atom and one of the two double bonds of 7-azaNBD. In one pair of the isomers, the metal binds to C(2)C(3) of both 7-azaNBD ligands; whereas in the other pair of isomers the metal binds to C(2)C(3) of one 7-azaNBD ligand and C(5)C(6) of another ligand. All structures were fully characterized by NMR spectra. A single crystal of compound 4 was analyzed by X-ray diffraction analysis, which was found to be monoclinic with a = 8.4199, b = 23.984, c = 16.395 Å, and β = 99.99°.  相似文献   

19.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

20.
Arjun Tiwari 《BBA》2009,1787(8):985-994
This study provides evidence for the superoxide oxidase and the superoxide reductase activity of cytochrome b559 (cyt b559) in PSII. It is reported that in Tris-treated PSII membranes upon illumination, both the intermediate potential (IP) and the reduced high potential (HPred) forms of cyt b559 exhibit superoxide scavenging activity and interconversion between IP and HPred form. When Tris-treated PSII membranes were illuminated in the presence of spin trap EMPO, the formation of superoxide anion radical (O2) was observed, as confirmed by EPR spin-trapping spectroscopy. The observations that the addition of enzymatic (superoxide dismutase) and non-enzymatic (cytochrome c, α-tocopherol and Trolox) O2 scavengers prevented the light-induced conversion of IP ↔ HPred cyt b559 confirmed that IP and HPred cyt b559 are reduced and oxidized by O2, respectively. Redox changes in cyt b559 by an exogenous source of O2 reconfirmed the superoxide oxidase and reductase activity of cyt b559. Furthermore, the light-induced conversion of IP to HPred form of cyt b559 was completely inhibited at pH > 8 and by chemical modification of the imidazole ring of histidine residues using diethyl pyrocarbonate. We proposed that a change in the environment around the heme iron, induced by the protonation and deprotonation of His22 residue generates a favorable condition for the oxidation and reduction of O2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号