首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated conditions for optimal in vitro propagation of human skin-derived mesenchymal stem cells (S-MSC). Forty primary skin-derived precursor cell (SKP) cultures were established from both male and female donors (age 29–65 years) and eight of them were randomly selected for in-depth characterization. Effects of basic fibroblast growth factor (FGF-2), epidermal growth factor (EGF), leukemia inhibiting factor (LIF) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on S-MSC proliferation were investigated. Primary SKP cultures were >95% homogenous for CD90, CD73, and CD105 marker expression enabling to classify these cells as S-MSC. FGF-2 dose-dependent stimulation was observed in low serum medium only, whereas EGF neither stimulated S-MSC proliferation nor potentates the effect of FGF-2. Pronounced donor to donor differences among S-MSC cultures were observed in 3-day proliferation assay. This study demonstrates that homogenous S-MSC populations can be reproducibly isolated from individual donors of different age. Optimal cell culture conditions for in vitro propagation of S-MSC are B27 supplemented or low serum media with FGF-2 (4 ng/ml). EGF and LIF as well as db-cAMP are dispensable for S-MSC proliferation.  相似文献   

2.
In this study, the function of nitric oxide (NO) in endoplasmic reticulum (ER)-related cell death in human glioma cells was investigated. Treatment of human CRT-MG cells with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and thapsigargin, an ER stress inducer, increased cytosolic Ca2+ and caused apoptosis in a dose-dependent manner. Expression of the ER-associated molecules inositol-requiring enzyme 1 (IRE1)-α, p-eIF, and Ero1-α were also elevated in thapsigargin- or NO donor-treated cells. Furthermore, thapsigargin and SNAP treatment increased IRE1-α nuclease activity, induced IRE1-α/TRAF2 complex formation, and increased p-JNK1/2 levels, suggesting that NO activates the IRE1-α/TRAF2/JNK pathway in the ER. Expression of IRE1-α increased concomitantly with cAMP responsive element binding protein (CREB) phosphorylation. siRNA knock down of IRE1-α reduced phospho-CREB levels and abolished its nuclear translocation. The levels of phospho-CREB and IRE1-α increased with NO donor concentration, which resulted in cell death. IRE1-α and phospho-CREB levels in glioblastoma U87MG cells were higher than those in normal astrocytes in response to NO. In addition, treatment with the intracellular cytokine interleukin-1β induced cell death associated with NO and increased IRE1-α and p-CREB levels. These data reveal that intracellular NO affects IRE1-α-dependent CREB phosphorylation in human glioma cells. Therefore, an IRE1-α-dependent phospho-CREB signaling pathway responsive to NO/Ca2+ may play an important role in regulating ER-related cell death in glioma.  相似文献   

3.
4.
The responsiveness of granulosa cells to FSH (cAMP) changes as these cells switch from the proliferative stage in growing follicles to the terminally differentiated, nonproliferating stage after LH-induced luteinization. To analyze this transition, two well characterized culture systems were used. 1) Granulosa cells isolated from immature rats were cultured in serum-free medium, a system that permits analysis of dynamic, short-term responses to hormones/cAMP. 2) Granulosa cells from preovulatory (PO) follicles that have been exposed in vivo to surge concentrations of hCG (PO/ hCG) were cultured in medium containing 1% FBS, a system that permits analyses of cells that have undergo irreversible, long-term changes associated with luteinization. To analyze the biochemical basis for the switch in cAMP responsiveness, the localization of A-kinase pathway components was related to the expression of two cAMP target genes, aromatase (CYP19) and serum-and glucocorticoid-induced kinase (Sgk). Components of the A-kinase pathway were analyzed by Western blotting and indirect immunofluorescence using specific antibodies to the C subunit, RIIalpha/beta subunits, CREB (cAMP-regulatory element binding protein), phospho-CREB, CBP (CREB binding protein), and Sgk. Cellular levels of C subunit and CREB were similar in all cell types and hormone treatments. CREB and CBP were nuclear; RIIalpha/beta was restricted to a cytoplasmic basket-like structure. Addition of FSH to immature granulosa cells caused rapid nuclear import of C subunit within 1 h. Nuclear C subunit decreased by 6 h after FSH but could be rapidly reimported to the nucleus by the addition of forskolin at 6, 24, or 48 h. Nuclear C subunit was associated with the rapid but transient increases in phospho-CREB. FSH induced Sgk in a biphasic manner in which the protein was nuclear at 1 h and cytoplasmic at 48 h. Aromatase mRNA was only expressed at 24-48 h after FSH, a pattern that was not altered by phosphodiesterases or phosphatases. In the luteinized (PO/hCG) granulosa cells, immunoreactive C subunit was localized in a punctate pattern in the nucleus as well as to a cytoplasmic basket-like structure, a distribution pattern not altered by forskolin. Aromatase, Sgk, and phospho-CREB were expressed at elevated levels in a non-forskolin-responsive manner. Most notable, both phospho-CREB and Sgk were preferentially localized in a punctate pattern within the cytoplasm and not altered by forskolin. Collectively, these data indicate that when granulosa cells differentiate to luteal cells the subcellular localization (nuclear vs. cytoplasmic) of A-kinase pathway components changes markedly. Thus, either the mechanisms of nuclear import and export or the presence of distinct docking sites (and functions ?) dictate where A-kinase, phospho-CREB and Sgk are localized in granulosa cells compared with the terminally differentiated luteal cells.  相似文献   

5.
6.
The phosphoinositide 3-OH kinase (PI3K)/Akt pathway has been implicated in regulating several important cellular processes, including apoptosis, survival, proliferation, and metabolism. Using both pharmacological and genetic means, we demonstrate here that PI3K/Akt plays a crucial role in the proliferation of adult hippocampal neural progenitor cells. PI3K/Akt transduces intracellular signals from multiple mitogens, including basic fibroblast growth factor (FGF-2), Sonic hedgehog (Shh), and insulin-like growth factor 1 (IGF-1). In addition, retroviral vector-mediated over-expression of wild type Akt increased cell proliferation, while a dominant negative Akt inhibited proliferation. Furthermore, wild type Akt over-expression reduced glial (GFAP) and neuronal (beta-tubulin III) marker expression during differentiation, indicating that it inhibits cell differentiation. We also show that activation of the cAMP response element binding protein (CREB), which occurs in cells stimulated by FGF-2, is limited when Akt signaling is inhibited, demonstrating a link between Akt and CREB. Over-expression of wild type CREB increases progenitor proliferation, whereas dominant negative CREB only slightly decreases proliferation. These results indicate that PI3K/Akt signaling integrates extracellular signaling information to promote cellular proliferation and inhibit differentiation in adult neural progenitors.  相似文献   

7.
8.
Activation of gene expression by the cAMP-dependent signaling pathway is regulated by members of the cAMP response element binding protein (CREB) family consisting of CREB, CREM, and ATF-1. It is decisively for the understanding of the heart function as to which type of heart cells expresses CREB and/or CREM. Ventricular myocytes and fibroblasts of young (3 months) and old (24 months) rat hearts were separately investigated to analyse CREB, CREM, and phospho-CREB. Western blot showed CREB expression exclusively in fibroblasts but CREM was predominantly detected in ventricular myocytes. CREB-positive nuclei in heart sections were only revealed in fibroblasts. CREB was activated by forskolin (10 microM), PMA (500 nM), and cyclical mechanical strain (1 Hz, 5% elongation) in fibroblasts. The number of CREB-positive myocytes in old rats was larger than in young rats. But CREB could not be activated by forskolin (10 microM) in all myocytes. Our results suggest that the expression of CREB depends on the cell type and the age of the animal. We discuss that modulation of gene expression as it occurs with a age could be affected by the change within the CREB family members.  相似文献   

9.
10.
11.
12.
13.
The NBT-II rat carcinoma cell line exhibits two mutually exclusive responses to FGF-1 and EGF, entering mitosis at cell confluency while undergoing an epithelium-to-mesenchyme transition (EMT) when cultured at subconfluency. EMT is characterized by acquisition of cell motility, modifications of cell morphology, and cell dissociation correlating with the loss of desmosomes from cellular cortex. The pleiotropic effects of EGF and FGF-1 on NBT-II cells suggest that multiple signaling pathways may be activated. We demonstrate here that growth factor activation is linked to at least two intracellular signaling pathways. One pathway leading to EMT involves an early and sustained stimulation of pp60c-src kinase activity, which is not observed during the growth factor-induced entry into the cell cycle. Overexpression of normal c-src causes a subpopulation of cells to undergo spontaneous EMT and sensitizes the rest of the population to the scattering activity of EGF and FGF-1 without affecting their mitogenic responsiveness. Addition of cholera toxin, a cAMP-elevating agent, severely perturbs growth factor induction of EMT without altering pp60c-src activation, therefore demonstrating that cAMP blockade takes place downstream or independently of pp60c-src. On the other hand, overexpression of a mutated, constitutively activated form of pp60c-src does not block cell dispersion while strongly inhibiting growth factor-induced entry into cell division. Moreover, stable transfection of a dominant negative mutant of c-src inhibits the scattering response without affecting mitogenesis induced by the growth factors. Altogether, these results suggest a role for pp60c-src in epithelial cell scattering and indicate that pp60c-src might contribute unequally to the two separate biological activities engendered by a single signal.  相似文献   

14.
15.
16.
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.  相似文献   

17.
The release of a fertilizable oocyte from the ovary is dependent upon the expansion of the cumulus cells. The expansion requires cooperation between epidermal growth factor (EGF) family peptide‐activated mitogen‐activated protein kinase (MAPK)3/1 and oocyte paracrine factor‐activated‐Sma‐ and Mad‐related protein (SMAD)2/3 signaling in cumulus cells. However, the mechanism underlying (MAPK)3/1 signaling is unclear. In the present study, the EGF‐activation of EGF receptor (EGFR) induced cyclic adenosine 3′,5′‐monophosphate (cAMP) response element‐binding protein (CREB) phosphorylation in cumulus cells, and the interruption of CREB functional complex formation by naphthol AS‐E phosphate (KG‐501) completely blocked the EGF‐stimulated expansion‐related gene expression. EGF‐stimulated phosphorylation of CREB was completely inhibited by MAPK3/1 inhibitor U0126, suggesting that EGF‐activated MAPK3/1 results in the activation of CREB for cumulus expansion. Also, the role of EGF‐stimulated calcium signaling was studied. Calcium‐elevating reagents ionomycin and sphingosine‐1‐phosphate mimicked, but calcium chelators bis‐(o'aminophenoxy)‐ethane‐N,N,N,N‐tetraacetic acid, tetra(acetoxymethyl)‐ester, and 8‐(N,N‐diethylamino)‐octyl‐3,4,5‐trimethoxybenzoate abolished the activity of EGF on CREB phosphorylation, cumulus expansion, and expansion‐related gene expression. Furthermore, EGF‐induced cumulus expansion was inhibited by calmodulin (CaM)‐dependent protein kinase II (CaMKII) inhibitors, KN‐93 and autocamtide‐2‐related inhibitory peptide. However, the inhibition of SMAD2/3 activity by removal of oocyte from cumulus–oocyte complexes did not affect the EGF‐induced CREB phosphorylation, indicating that EGF‐activated CREB is independent of oocyte‐activated SMAD2/3 signaling. Therefore, EGF‐induced CREB activity by MAPK3/1 and Ca2+/CaMKII signaling pathways promotes the expansion‐related gene expression and consequent cumulus expansion.  相似文献   

18.
19.
20.
The -adrenergic receptor agonist isoproterenol exerts growth-promoting effects on salivary glands. In this study, activation of ERKs, members of the mitogen-activated protein kinase family, by isoproterenol was examined in a human salivary gland cell line (HSY). Immunoblot analysis indicated that isoproterenol (10–5 M) induced transient activation of ERK1/2 (4.4-fold relative to basal at 10 min) similar to that caused by EGF (6.7 fold). Isoproterenol, like EGF, also induced phosphorylation of the EGF receptor. However, inhibition of EGF receptor phosphorylation by the tyrphostin AG-1478 only partially attenuated isoproterenol-induced ERK phosphorylation, whereas EGF-responsive ERK activation was completely blocked. The Gi inhibitor pertussis toxin also caused partial inhibition of isoproterenol-stimulated ERK activation. The cAMP analog 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and the cAMP-elevating agents IBMX and cholera toxin produced transient ERK1/2 activation, similar to the effect of isoproterenol, in HSY cells. The stimulatory effects of isoproterenol and cAMP on ERK phosphorylation were not reduced by the PKA inhibitor H-89, whereas the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidase (PP2) and transfection of a dominant-negative Src construct diminished isoproterenol-induced ERK activation. Isoproterenol induced marked overexpression of the cell growth-related adhesion molecule CD44, and this effect of isoproterenol was abolished by the ERK pathway inhibitor PD-98059. In summary, we show a dual mechanism of isoproterenol-induced ERK phosphorylation in HSY cells—one pathway mediated by EGF receptor transactivation and the other by an EGF receptor-independent pathway possibly mediated by cAMP. Our results also suggest that isoproterenol-induced growth of salivary tissue may involve ERK-mediated CD44 expression. mitogen-activated protein kinase; CD44  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号