首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among eight samples obtained from a French primatology research center, six adult guinea baboons (Papio hamadryas papio), caught in the wild in Senegal, had a peculiar human T-cell leukemia virus type 2 (HTLV-2)-like Western blot seroreactivity (p24(+), GD21(+), K55(+/-)). Partial sequence analyses of the tax genes (433 bp) indicated that these baboons were infected by a novel divergent simian T-cell lymphotropic virus (STLV). Analyses of the complete proviral sequence (8,892 bp) for one of these strains (STLV-3/PPA-F3) indicate that this STLV was highly divergent from the HTLV-1 (61.6% of nucleotide similarity), HTLV-2 (61.2%), or STLV-2 (60.6%) prototype. It was, however, much more closely related to the few other known STLV-3 strains, exhibiting 87 and 89% of nucleotide similarity with STLV-3/PHA-PH969 (formerly PTLV-L/PH969) and STLV-3/CTO-604, respectively. The STLV-3/PPA-F3 sequence possesses the major HTLV or STLV open reading frames corresponding to the structural, enzymatic, and regulatory proteins. However, its long terminal repeat comprises only two 21-bp repeats. In all phylogenetic analyses, STLV-3/PPA-F3 clustered together in a highly supported single clade with the other known strains of STLV-3, indicating an independent evolution from primate T-cell lymphotropic virus type 1 (PTLV-1) and PTLV-2. The finding of a new strain of STLV-3 in a West African monkey (Guinea baboon) greatly enlarges the geographical distribution and the host range of species infected by this PTLV type in the African continent. The recent discovery of several different STLV-3 strains in many different African monkey species, often in contact with humans, strongly suggests potential interspecies transmission events, as it was described for STLV-1, between nonhuman primates but also to humans.  相似文献   

2.
3.
Three types of human T-cell leukemia virus (HTLV)-simian T-cell leukemia virus (STLV) (collectively called primate T-cell leukemia viruses [PTLVs]) have been characterized, with evidence for zoonotic origin from primates for HTLV type 1 (HTLV-1) and HTLV-2 in Africa. To assess human exposure to STLVs in western Central Africa, we screened for STLV infection in primates hunted in the rain forests of Cameroon. Blood was obtained from 524 animals representing 18 different species. All the animals were wild caught between 1999 and 2002; 328 animals were sampled as bush meat and 196 were pets. Overall, 59 (11.2%) of the primates had antibodies cross-reacting with HTLV-1 and/or HTLV-2 antigens; HTLV-1 infection was confirmed in 37 animals, HTLV-2 infection was confirmed in 9, dual HTLV-1 and HTLV-2 infection was confirmed in 10, and results for 3 animals were indeterminate. Prevalences of infection were significantly lower in pets than in bush meat, 1.5 versus 17.0%, respectively. Discriminatory PCRs identified STLV-1, STLV-3, and STLV-1 and STLV-3 in HTLV-1-, HTLV-2-, and HTLV-1- and HTLV-2-cross-reactive samples, respectively. We identified for the first time STLV-1 sequences in mustached monkeys (Cercopithecus cephus), talapoins (Miopithecus ogouensis), and gorillas (Gorilla gorilla) and confirmed STLV-1 infection in mandrills, African green monkeys, agile mangabeys, and crested mona and greater spot-nosed monkeys. STLV-1 long terminal repeat (LTR) and env sequences revealed that the strains belonged to different PTLV-1 subtypes. A high prevalence of PTLV infection was observed among agile mangabeys (Cercocebus agilis); 89% of bush meat was infected with STLV. Cocirculation of STLV-1 and STLV-3 and STLV-1-STLV-3 coinfections were identified among the agile mangabeys. Phylogenetic analyses of partial LTR sequences indicated that the agile mangabey STLV-3 strains were more related to the STLV-3 CTO604 strain isolated from a red-capped mangabey (Cercocebus torquatus) from Cameroon than to the STLV-3 PH969 strain from an Eritrean baboon or the PPA-F3 strain from a baboon in Senegal. Our study documents for the first time that (i) a substantial proportion of wild-living monkeys in Cameroon is STLV infected, (ii) STLV-1 and STLV-3 cocirculate in the same primate species, (iii) coinfection with STLV-1 and STLV-3 occurs in agile mangabeys, and (iv) humans are exposed to different STLV-1 and STLV-3 subtypes through handling primates as bush meat.  相似文献   

4.
The proviral DNA of the simian T-leukemia/lymphotropic virus (STLV) isolate, originally obtained from a captive colony of pygmy chimpanzees (Pan paniscus) (STLV(pan-p)), was cloned from the DNA of the chronically infected human T-cell line L93-79B. The entire proviral DNA sequence was obtained and compared with sequences of the known genotypes of STLV and human T-leukemia/lymphotropic virus types 1 and 2 (HTLV-1 and -2). Phylogenetic analysis indicates that STLV-2(pan-p) is an early divergence within the type 2 lineage and should be referred to as STLV-2(pan-p). Since STLV-2(pan-p) has been found in African nonhuman primates, we investigated its infectiousness and pathogenicity in Asian monkeys. Pigtailed macaques were inoculated with human cells harboring STLV(pan-p), and infection was assessed by virus isolation, PCR analysis of peripheral blood mononuclear cells, and seroconversion against viral antigens in HTLV-1/HTLV-2 and Western blot assay. Pigtailed macaques became persistently infected by STLV-2(pan-p), and the virus could be transferred by blood transfusion from an infected pigtailed macaque to a rhesus macaque. In addition, like HTLV-1 and HTLV-2, STLV-2(pan-p) was infectious in rabbits. In summary, STLV-2(pan-p) is a novel retrovirus distantly related to HTLV-2 and displays a host range similar to that demonstrated for other HTLV and STLV strains.  相似文献   

5.
A recent serological and molecular survey of a semifree-ranging colony of mandrills (Mandrillus sphinx) living in Gabon, central Africa, indicated that 6 of 102 animals, all males, were infected with simian T-cell lymphotropic virus type 1 (STLV-1). These animals naturally live in the same forest area as do human inhabitants (mostly Pygmies) who are infected by the recently described human T-cell lymphotropic virus type 1 (HTLV-1) subtype D. We therefore investigated whether these mandrills were infected with an STLV-1 related to HTLV-1 subtype D. Nucleotide and/or amino acid sequence analyses of complete or partial long terminal repeat (LTR), env, and rex regions showed that HTLV-1 subtype D-specific mutations were found in three of four STLV-1-infected mandrills, while the remaining monkey was infected by a different STLV-1 subtype. Phylogenetic studies conducted on the LTR as well as on the env gp21 region showed that these three new STLV-1 strains from mandrills fall in the same monophyletic clade, supported by high bootstrap values, as do the sequences of HTLV-1 subtype D. These data show, for the first time, the presence of the same subtype of primate T-cell lymphotropic virus type 1 in humans and wild-caught monkeys originating from the same geographical area. This strongly supports the hypothesis that mandrills are the natural reservoir of HTLV-1 subtype D, although the possibility that another monkey species living in the same area could be the original reservoir of both human and mandrill viruses cannot be excluded. Due to the quasi-identity of both human and monkey viruses, interspecies transmission episodes leading to such a clade may have occurred recently.  相似文献   

6.
We identified a potential new subtype within human T-cell lymphotropic virus type 2 (HTLV-2), HTLV-2d, present in members of an isolated Efe Bambuti Pygmy tribe. Two of 23 Efe Pygmies were HTLV-2 seropositive, with HTLV-2 Western blot and enzyme-linked immunosorbent assay reactivities. From one of them the entire genome of the HTLV-2 strain Efe2 could be amplified and sequenced. In all gene regions analyzed, this strain was the most divergent HTLV-2 strain, differing by 2.4% (tax/rex) to 10.7% (long terminal repeat) from both subtypes HTLV-2a and HTLV-2b, yet major functional elements are conserved. The similarity between the HTLV-2 Efe2 Gag and Env proteins and the corresponding HTLV-2a and -2b proteins is consistent with the observed serological reactivity. In the proximal pX region, one of the two alternative splice acceptor sites is abolished in HTLV-2 Efe2. Another interesting feature of this potential new subtype is that it has a Tax protein of 344 amino acids (aa), which is intermediate in length between the HTLV-2a Tax protein (331 aa) and the HTLV-2b and -2c Tax proteins (356 aa) and similar to the simian T-cell lymphotropic virus type 2 (STLV-2) PP1664 Tax protein. Together these two findings suggest a different phenotype for the HTLV-2 Efe2 strain. Phylogenetic analyses confirmed that the Pygmy Efe2 strain potentially belonged to a new and quite divergent subtype, HTLV-2d. When the STLV-2 bonobo viruses PP1664 and PanP were used as an outgroup, it was clear that the Pygmy HTLV-2 Efe2 strain had the longest independent evolution and that HTLV-2 evolution is consistent with an African origin.  相似文献   

7.
A serological survey of a captive colony of Asian monkeys indicated that six Macaca arctoides had antibodies to human T-cell leukemia/lymphotropic viruses (HTLV). Over a 4-year interval, sera from these animals continued to exhibit a peculiar Western blot (WB) pattern resembling an HTLV-2 pattern (p24gag reactivity of equal or greater intensity than that of p19gag and a strong reactivity to recombinant gp21) but also exhibiting, in five of six cases, a reactivity against MTA-1, an HTLV-1 gp46 peptide. PCR experiments on DNA extracted from peripheral blood mononuclear cells using HTLV-1- or HTLV-2-specific long terminal repeat, gag, pol, env, and tax primers yielded negative results. However, highly conserved primers successfully amplified three different gene segments of env, tax, and env-tax. The results of comparative sequence analysis demonstrated that STLV-1marc1 was not closely related to any known STLV-1 strain, was the most divergent strain of the HTLV-1-STLV-1 group, and lacked the ATG initiation codons corresponding to the p12 and p13 proteins of HTLV-1. Phylogenetic analyses incorporating representative strains of all known HTLV-STLV clades consistently depicted STLV-1marc1 within the HTLV-1-STLV-1 type 1 lineage, but it probably diverged early, since its position is clearly different from all known viral strains of this group and it had a bootstrap resampling value of 100%. Genetic distance estimates between STLV-1marc1 and all other type 1 viruses were of the same order of magnitude as those between STLV-2PanP and all other type 2 viruses. In light of the recent demonstration of interspecies transmission of some STLV-1 strains, our results suggest the existence in Asia of HTLV-1 strains related to this new divergent STLV-1marc1 strain, which may be derived from a common ancestor early in the evolution of the type 1 viruses and could be therefore considered a prototype of a new HTLV-STLV clade.  相似文献   

8.
F Ibrahim  G de Th    A Gessain 《Journal of virology》1995,69(11):6980-6993
A study of simian T-cell leukemia virus type 1 (STLV-1) infection in a captive colony of 23 Macaca tonkeana macaques indicated that 17 animals had high human T-cell leukemia virus type 1 (HTLV-1) antibody titers. Genealogical analysis suggested mainly a mother-to-offspring transmission of this STLV-1. Three long-term T-cell lines, established from peripheral blood mononuclear cell cultures from three STLV-1-seropositive monkeys, produced HTLV-1 Gag and Env antigens and retroviral particles. The first complete nucleotide sequence of an STLV-1 (9,025 bp), obtained for one of these isolates, indicated an overall genetic organization similar to that of HTLV-1 but with a nucleotide variability for the structural genes ranging from 7.8 to 13.1% compared with the HTLV-1 ATK and STLV-1 PTM3 Asian prototypes. The Tax and Rex regulatory proteins were well conserved, while the pX region, known to encode new proteins in HTLV-1 (open reading frames I and II), was more divergent than that in the ATK strain. Furthermore, a fragment of 522 bp of the gp21 env gene from uncultured peripheral blood mononuclear cell DNAs from five of the STLV-1-infected monkeys was sequenced. Phylogenetic trees constructed with the long terminal repeat and env (gp46 and gp21) regions demonstrated that this new STLV-1 occupies a unique position within the Asian STLV-1 and HTLV-1 isolates, being, by most analyses, related more to the Australo-Melanesian HTLV-1 topotype than to any other Asian STLV-1. These data raise new hypotheses on the possible interspecies viral transmission between monkeys carrying STLV-1 and early Australoid settlers, ancestors of the present day Australo-Melanesian inhabitants, during their migrations from the Southeast Asian land mass to the greater Australian continent.  相似文献   

9.
Simian T-lymphotropic virus type 1 (STLV-1) is a C-type retrovirus of nonhuman primates that is genetically and antigenically related to human T-lymphotropic virus type 1 (HTLV-1). Infection with STLV-1 has been reported in many species of Old World monkeys and apes, including rhesus macaques (Macaca mulatta). Similar to HTLV infection in humans, STLV infection has been associated with T-cell lymphoproliferative disease or lymphoma in a small proportion of infected animals, predominantly African species. There are conflicting reports of T-cell subset alterations in healthy HTLV-1 carriers. To the authors' knowledge, analysis of T-cell subsets in healthy STLV-1 carrier rhesus macaques has not been reported. Subsets of T cells in peripheral blood from healthy, STLV-1-seropositive rhesus macaques (n = 17) and seronegative controls matched for age and sex (n = 17) were determined by use of fluorescence-activated cell sorter analysis. Parameters measured included CD3, CD4, CD8, CD25, CD28, CD38, and HLA-DR cell sets. Significant differences in T-cell subsets or hematologic parameters were not observed between healthy STLV-seropositive and seronegative groups.  相似文献   

10.
A third type of primate T-lymphotropic virus, PTLV-L, with STLV-PH969 as a prototype, has recently been isolated from an African baboon (Papio hamadryas). Classification of this virus has been based on partial sequence analysis of cDNA from a virus-producing cell line, PH969. We obtained the complete nucleotide sequence of this virus with a proviral genome of 8,916 bp. All major genes, homologous in all human T-cell lymphotropic virus (HTLV)-related viruses, and their corresponding mRNAs, including appropriate splicing, were identified. One additional nonhomologous open reading frame in the proximal pX region is accessible for translation through alternative splicing. Sequence comparison shows that STLV-PH969 is equidistantly related to HTLV type 1 (HTLV-1) and HTLV-2. In all coding regions, the similarity tends to be the lowest between STLV-PH969 and HTLV-1. However, in the long terminal repeat (LTR) region, the lowest similarity was found between STLV-PH969 and HTLV-2. The U3-R and R-U5 boundaries of the STLV-PH969 LTR were experimentally determined at nucleotides 268 and 524, respectively. This 695-bp LTR is 60 and 73 bp shorter than the LTRs of HTLV-1 and HTLV-2, respectively, but its general organization is similar to the one found in the HTLV-bovine leukemia virus genus. In the long region between the polyadenylation signal and the poly(A) site, sequence similarity with the HTLV-1 Rex-responsive element (RexRE) core and secondary structure prediction suggest the presence of a RexRE. The presence of three 21-bp repeats is conserved within the U3 region of HTLV-1, HTLV-2, and BLV. Only two direct repeats with similarity to these Tax-responsive elements were found in the STLV-PH969 LTR, which might suggest differences in the Tax-mediated transactivation of this virus. We conclude that STLV-PH969 has all the genes and genomic regions to suggest a replication cycle comparable to that of HTLV-1 and HTLV-2.  相似文献   

11.
HIV-1 Tat interaction with Dicer: requirement for RNA   总被引:1,自引:0,他引:1  
Four primate (PTLV), human (HTLV) and simian (STLV) T-cell leukemia virus types, have been characterized thus far, with evidence of a simian zoonotic origin for HTLV-1, HTLV-2 and HTLV-3 in Africa. The PTLV envelope glycoprotein surface component (SUgp46) comprises a receptor-binding domain (RBD) that alternates hypervariable and highly conserved sequences. To further delineate highly conserved motifs in PTLV RBDs, we investigated the intrahost variability of HTLV-1 and STLV-1 by generating and sequencing libraries of DNA fragments amplified within the RBD of the SUgp46 env gene. Using new and highly cross-reactive env primer pairs, we observed the presence of Env quasispecies in HTLV-1 infected individuals and STLV-1 naturally infected macaques, irrespective of the clinical status. These intrahost variants helped us to define highly conserved residues and motifs in the RBD. The new highly sensitive env PCR described here appears suitable for the screening of all known variants of the different PTLV types and should, therefore, be useful for the analysis of seroindeterminate samples.  相似文献   

12.
13.
To gain new insights on the origin, evolution, and modes of dissemination of human T-cell leukemia virus type I (HTLV-1), we performed a molecular analysis of 58 new African HTLV-1 strains (18 from West Africa, 36 from Central Africa, and 4 from South Africa) originating from 13 countries. Of particular interest were eight strains from Pygmies of remote areas of Cameroon and the Central African Republic (CAR), considered to be the oldest inhabitants of these regions. Eight long-term activated T-cell lines producing HTLV-1 gag and env antigens were established from peripheral blood mononuclear cell cultures of HTLV-1 seropositive individuals, including three from Pygmies. A fragment of the env gene encompassing most of the gp21 transmembrane region was sequenced for the 58 new strains, while the complete long terminal repeat (LTR) region was sequenced for 9 strains, including 4 from Pygmies. Comparative sequence analyses and phylogenetic studies performed on both the env and LTR regions by the neighbor-joining and DNA parsimony methods demonstrated that all 22 strains from West and South Africa belong to the widespread cosmopolitan subtype (also called HTLV-1 subtype A). Within or alongside the previously described Zairian cluster (HTLV-1 subtype B), we discovered a number of new HTLV-1 variants forming different subgroups corresponding mainly to the geographical origins of the infected persons, Cameroon, Gabon, and Zaire. Six of the eight Pygmy strains clustered together within this Central African subtype, suggesting a common origin. Furthermore, three new strains (two originating from Pygmies from Cameroon and the CAR, respectively, and one from a Gabonese individual) were particularly divergent and formed a distinct new phylogenetic cluster, characterized by specific mutations and occupying in most analyses a unique phylogenetic position between the large Central African genotype (HTLV-1 subtype B) and the Melanesian subtype (HTLV-1 subtype C). We have tentatively named this new HTLV-1 genotype HTLV-1 subtype D. While the HTLV-1 subtype D strains were not closely related to any known African strain of simian T-cell leukemia virus type 1 (STLV-1), other Pygmy strains and some of the new Cameroonian and Gabonese HTLV-1 strains were very similar (>98% nucleotide identity) to chimpanzee STLV-1 strains, reinforcing the hypothesis of interspecies transmission between humans and monkeys in Central Africa.  相似文献   

14.
15.
A study was conducted to evaluate the prevalence and diversity of simian T-cell lymphotropic virus (STLV) isolates within the long-established Tulane National Primate Research Center (TNPRC) colony of sooty mangabeys (SMs; Cercocebus atys). Serological analysis determined that 22 of 39 animals (56%) were positive for STLV type 1 (STLV-1). A second group of thirteen SM bush meat samples from Sierra Leone in Africa was also included and tested only by PCR. Twenty-two of 39 captive animals (56%) and 3 of 13 bush meat samples (23%) were positive for STLV-1, as shown by testing with PCR. Nucleotide sequencing and phylogenetic analysis of viral strains obtained demonstrated that STLV-1 strains from SMs (STLV-1sm strains) from the TNPRC colony and Sierra Leone formed a single cluster together with the previously reported STLV-1sm strain from the Yerkes National Primate Research Center. These data confirm that Africa is the origin for TNPRC STLV-1sm and suggest that Sierra Leone is the origin for the SM colonies in the United States. The TNPRC STLV-1sm strains further divided into two subclusters, suggesting STLV-1sm infection of two original founder SMs at the time of their importation into the United States. STLV-1sm diversity in the TNPRC colony matches the high diversity of SIVsm in the already reported colony. The lack of correlation between the lineage of the simian immunodeficiency virus from SMs (SIVsm) and the STLV-1sm subcluster distribution of the TNPRC strains suggests that intracolony transmissions of both viruses were independent events.  相似文献   

16.
A study of the growth of primate/human T cells led to mechanisms for temporary laboratory culture of these cells (discovery of interleukin-2) and also their continuous culture (by immortalization after infection with human T-cell lymphotropic virus type 1 or 2 (HTLV-1 or 2)). Cultures of lymphocytes also led us to isolate five persisting T-tropic viruses: 1. the Hall's Island strain of gibbon ape leukemia virus, 2. HTLV-1, 3. HTLV-2, 4. human immunodeficiency virus and 5. human herpes virus-6 (HHV-6). This report is a brief synopsis of the discoveries of the first human retroviruses, the HTLV.  相似文献   

17.
Simian T-cell leukemia viruses (STLVs) are the simian counterparts of human T-cell leukemia viruses (HTLVs). A novel, divergent type of STLV (STLV-L) from captive baboons was reported in 1994, but its natural prevalence remained unclear. We investigated the prevalence of STLV-L in 519 blood samples from wild-living nonhuman primates in Ethiopia. Seropositive monkeys having cross-reactive antibodies against HTLV were found among 22 out of 40 hamadryas baboons, 8 of 96 anubis baboons, 24 of 50 baboons that are hybrids between hamadryas and anubis baboons, and 41 of 177 grivet monkeys, but not in 156 gelada baboons. A Western blotting assay showed that sera obtained from seropositive hamadryas and hybrid baboons exhibited STLV-L-like reactivity. A PCR assay successfully amplified STLV sequences, which were subsequently sequenced and confirmed as being closely related to STLV-L. Surprisingly, further PCR showed that nearly half of the hamadryas (20 out of 40) and hybrid (19 out of 50) baboons had STLV-L DNA sequences. In contrast, most of the seropositive anubis baboons and grivet monkeys carried typical STLV-1 but not STLV-L. These observations demonstrate that STLV-L naturally prevails among hamadryas and hybrid baboons at significantly high rates. STLV-1 and -2, the close relative of STLV-L, are believed to have jumped across simian-human barriers, which resulted in widespread infection of HTLV-1 and -2. Further studies are required to know if STLV-L is spreading into human populations.  相似文献   

18.
An outbreak of malignant lymphoma has been observed in one of the baboon (Papio hamadryas) stocks of Sukhumi Primate Center. More than 300 cases in this "high-lymphoma stock" have been registered since 1967. Human T-cell lymphotropic virus type 1 (HTLV-1)-related virus was implicated as the etiologic agent of Sukhumi baboon lymphoma. The origin of this virus remained unclear. Two possibilities were originally considered: the origin could be baboon simian T-cell leukemia/lymphoma virus type 1 (STLV-1) or HTLV-1 (before the outbreak started, some Sukhumi baboons were inoculated with human leukemic material). The third possibility entered recently: interspecies transmission of rhesus macaque STLV-1 to baboons. It was prompted by the finding of very close similarity between STLV-1 991-1cc (the strain isolated from a non-Sukhumi baboon inoculated with material from a Sukhumi lymphomatous baboon) and rhesus STLV-1. To test this hypothesis, we investigated 37 Sukhumi STLV-1 isolates from baboons of high-lymphoma stock by PCR discriminating rhesus type and baboon type STLV-1 isolates. All of them were proved to be rhesus type STLV-1. In contrast, all six STLV-1 isolates from baboons belonging to other stocks or populations were of baboon type. The PCR results were fully confirmed by DNA sequence data. The partial env gene gene sequences of all four STLV-1 isolates from Sukhumi lymphomatous baboons were 97 to 100% similar to the sequence of known rhesus STLV-1 and only 85% homologous with the sequence of conventional baboon STLV-1. Thus, interspecies transmission of STLV-1 from rhesus macaques (or closely related species) to baboons occurred at Sukhumi Primate Center. Most probably this event initiated the outbreak of lymphoma in Sukhumi baboons.  相似文献   

19.
Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model.  相似文献   

20.
Little is known about the transmission or tropism of the newly discovered human retrovirus, human T-cell lymphotropic virus type 3 (HTLV-3). Here, we examine the entry requirements of HTLV-3 using independently expressed Env proteins. We observed that HTLV-3 surface glycoprotein (SU) binds efficiently to both activated CD4+ and CD8+ T cells. This contrasts with both HTLV-1 SU, which primarily binds to activated CD4+ T cells, and HTLV-2 SU, which primarily binds to activated CD8+ T cells. Binding studies with heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), two molecules important for HTLV-1 entry, revealed that these molecules also enhance HTLV-3 SU binding. However, unlike HTLV-1 SU, HTLV-3 SU can bind efficiently in the absence of both HSPGs and NRP-1. Studies of entry performed with HTLV-3 Env-pseudotyped viruses together with SU binding studies revealed that, for HTLV-1, glucose transporter 1 (GLUT-1) functions at a postbinding step during HTLV-3 Env-mediated entry. Further studies revealed that HTLV-3 SU binds efficiently to naïve CD4+ T cells, which do not bind either HTLV-1 or HTLV-2 SU and do not express detectable levels of HSPGs, NRP-1, and GLUT-1. These results indicate that the complex of receptor molecules used by HTLV-3 to bind to primary T lymphocytes differs from that of both HTLV-1 and HTLV-2.The primate T-cell lymphotropic virus (PTLV) group of deltaretroviruses consists of three types of human T-cell lymphotropic viruses (HTLVs) (HTLV-1, HTLV-2, HTLV-3), their closely related simian T-cell lymphotropic viruses (STLVs) (STLV-1, STLV-2, STLV-3), an HTLV (HTLV-4) for which a simian counterpart has not been yet identified, and an STLV (STLV-5) originally described as a divergent STLV-1 (5-7, 30, 35, 37, 38, 45, 51, 53). HTLV-1 and HTLV-2, which have a 70% nucleotide homology, differ in both their pathobiology and tropism (reviewed in reference 13). While HTLV-1 causes a neurological disorder (tropical spastic paraparesis/HTLV-1-associated myelopathy) and a hematological disease (adult T-cell leukemia/lymphoma) (15, 42, 55), HTLV-2 is only rarely associated with tropical spastic paraparesis/HTLV-1-associated myelopathy-like disease and is not definitively linked to any lymphoproliferative disease (12, 20). In vivo, both HTLV-1 and HTLV-2 infect T cells. Although HTLV-1 is primarily found in CD4+ T cells, other cell types in the peripheral blood of infected individuals have been found to contain HTLV-1, including CD8+ T cells, dendritic cells, and B cells (19, 29, 33, 36, 46).Binding and entry of retroviruses requires specific interactions between the Env glycoproteins on the virus and cell surface receptor complexes on target cells. For HTLV-1, three molecules have been identified as important for entry, as follows: heparan sulfate proteoglycans (HSPGs), neuropilin-1 (NRP-1), and glucose transporter 1 (GLUT-1) (16, 22, 26, 28, 29, 34, 39, 44). Recent studies support a model in which HSPG and NRP-1 function during the initial binding of HTLV-1 to target cells, and GLUT-1 functions at a postattachment stage, most likely to facilitate fusion (29, 34, 49). Efficient HTLV-2 binding and entry requires NRP-1 and GLUT-1 but not HSPGs (16, 26, 39, 49).This difference in the molecules required for binding to target cells reflects differences in the T-cell tropisms of these two viruses. Activated CD4+ T cells express much higher levels of HSPGs than CD8+ T cells (26). In infected individuals, HTLV-1 is primarily found in CD4+ T cells, while HTLV-2 is primarily found in CD8+ T cells (21, 43, 46). In vitro, HTLV-1 preferentially transforms CD4+ T cells while HTLV-2 preferentially transforms CD8+ T cells, and this difference has been mapped to the Env proteins (54).We and others have reported the discovery of HTLV-3 in two Cameroonese inhabitants (6, 7, 53). We recently uncovered the presence of a third HTLV-3 strain in a different population living several hundred kilometers away from the previously identified groups (5), suggesting that this virus may be common in central Africa. Since the HTLV-3 sequences were obtained by PCR amplification of DNA isolated from peripheral blood mononuclear cells (PBMCs) of infected individuals, little is known about its tropism and pathobiology in vivo. Based on the correlation between HSPG expression levels and viral tropisms of HTLV-1 and HTLV-2, we reasoned that knowledge about the HTLV-3 receptors might provide insight into the tropism of this virus. We therefore generated vectors expressing HTLV-3 Env proteins and used them to begin to characterize the receptor complex used by HTLV-3 to bind and enter cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号