首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

2.
The formation and degradation of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] are of great metabolic importance, because of its role in the mediation of calcium release from intracellular stores. The concentration of Ins(1,4,5)P3 in the cell is regulated by three signaling enzymes: phospholipase C isoforms release Ins(1,4,5)P3 from the plasma membrane by hydrolysis of phosphatidyl inositol 4,5-bisphosphate, whereas inositol phosphate 5-phosphatases remove it by dephosphorylation and a group of inositol phosphate kinases eliminate it by further phosphorylation at its 3- or 6-hydroxy group. The latter group is formed by the three isoforms of Ins(1,4,5)P3 3-kinase (IP3K) and inositol phosphate multikinase. In this article the tissue specific gene expression, molecular structure, role in calcium oscillations, regulation by calcium calmodulin, by phosphorylation and by intracellular localization of the IP3K isoforms are discussed. Another important aspect is the evolution of diverse inositol phosphate metabolizing enzymes from a eukaryotic founder by different mechanisms of gene diversification. Finally the role of IPMK in calcium signaling will be elucidated in more detail.  相似文献   

3.
Inositol phosphates function as second messengers for a variety of extracellular signals. Ins(1,4,5)P(3) generated by phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate, triggers numerous cellular processes by regulating calcium release from internal stores. The Ins(1,4,5)P(3) signal is coupled to a complex metabolic cascade involving a series of phosphatases and kinases. These enzymes generate a range of inositol phosphate derivatives, many of which have signaling roles of their own. We have integrated published biochemical data to build a mass action model for InsP(3) metabolism. The model includes most inositol phosphates that are currently known to interact with each other. We have used this model to study the effects of a G-protein coupled receptor stimulus that activates phospholipase C on the inositol phosphates. We have also monitored how the metabolic cascade interacts with Ins(1,4,5)P(3)-mediated calcium release. We find temporal dynamics of most inositol phosphates to be strongly influenced by the elaborate networking. We also show that Ins(1,3,4,5)P(4) plays a key role in InsP(3) dynamics and allows for paired pulse facilitation of calcium release. Calcium oscillations produce oscillatory responses in parts of the metabolic network and are in turn temporally modulated by the metabolism of InsP(3).  相似文献   

4.
Morita M  Yoshiki F  Nakane A  Okubo Y  Kudo Y 《The FEBS journal》2007,274(19):5147-5157
The production and further metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] require several calcium-dependent enzymes, but little is known about subsequent calcium-dependent changes in cellular Ins(1,4,5)P3. To study the calcium dependence of muscarinic acetylcholine receptor-induced Ins(1,4,5)P3 increases in PC12h cells, we utilized an Ins(1,4,5)P3 imaging system based on fluorescence resonance energy transfer and using green fluorescent protein variants fused with the pleckstrin homology domain of phospholipase C-delta1. The intracellular calcium concentration, monitored by calcium imaging, was adjusted by thapsigargin pretreatment or alterations in extracellular calcium concentration, enabling rapid receptor-independent changes in calcium concentration via store-operated calcium influx. We found that Ins(1,4,5)P3 production was increased by a combination of receptor- and calcium-dependent components, rather than by calcium alone. The level of Ins(1,4,5)P3 induced by the receptor was found to be half that induced by the combined receptor and calcium components. Increases in calcium levels prior to receptor activation did not affect the subsequent receptor-induced Ins(1,4,5)P3 increase, indicating that calcium does not influence Ins(1,4,5)P3 production without receptor activation. Removal of both the receptor agonists and calcium rapidly restored calcium and Ins(1,4,5)P3 levels, whereas removal of calcium alone restored calcium to its basal concentration. Similar calcium-dependent increases in Ins(1,4,5)P3 were also observed in Chinese hamster ovary cells expressing m1 muscarinic acetylcholine receptor, indicating that the observed calcium dependence is common to Ins(1,4,5)P3 production. To our knowledge, our results are the first showing receptor- and calcium-dependent components within cellular Ins(1,4,5)P3.  相似文献   

5.
In the rat mammary tumoral cell line (WRK1 cells), vasopressin was previously described to stimulate a phospholipase C. In this study, we have analysed the effect of vasopressin both on intracellular calcium mobilization and on the accumulation of inositol phosphates. Maximal concentration of vasopressin simultaneously induces an accumulation of Ins(1,4,5)P3 and a rise of intracellular calcium concentration. Both these two phenomena are transient and exhibit similar kinetics. A sustained accumulation of InsP2, Ins(1,3,4)P3 and InsP are observed later. Yet no stimulation of InsP4 can be objectified. These results indicate that Ins(1,4,5)P3 is the major inositol phosphate involved in intracellular calcium mobilization.  相似文献   

6.
Abstract: Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3–4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2+-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+], changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

7.
The role of calcium ions in the L-thyroxine-induced initiation of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and also the course of releasing individual fractions of inositol phosphates and diacylglycerides (DAG) were studied in liver cells during early stages of the hormone effect. L-Thyroxine stimulated a rapid hydrolysis in hepatocytes of PtdInsP2 labeled with [14C]linoleic acid and [3H]inositol mediated by phosphoinositide-specific phospholipase C. This was associated with accumulation of [14C]DAG, total inositol phosphates, [3H]inositol 1,4,5-trisphosphate (Ins1,4,5P3) and [3H]inositol 1,4-bisphosphate (Ins1,4P2). Elimination of calcium ions from the incubation medium of hepatocytes did not abolish the effect of thyroxine on the accumulation of [14C]DAG and total [3H]inositol phosphates. Preincubation of liver cells with TMB-8 increased the stimulatory effect of L-thyroxine on the accumulation of [14C]DAG. During the incubation of hepatocytes in the presence of the hormone the content of 14C-labeled fatty acids did not change. The L-thyroxineinduced accumulation of [3H]Ins1,4,5P3 and [3H]Ins1,4P2 did not depend on the presence of calcium ions in the incubation medium of the cells.  相似文献   

8.
Second messengers derived from inositol lipids   总被引:2,自引:0,他引:2  
Many hormones, growth factors, and neurotransmitters stimulate their target cells by promoting the hydrolysis of plasma-membrane phosphoinositides to form the two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In such cells, ligand-receptor interaction stimulates specific phospholipases that are activated by guanyl nucleotide regulatory G proteins or tyrosine phosphorylation. In many cells, the initial rise in cytoplasmic calcium due to Ins(1,4,5)P3-induced mobilization of calcium from agonistsensitive stores is followed by a sustained phase of cytoplasmic calcium elevation that maintains the target-cell response, and is dependent on influx of extracellular calcium. Numerous inositol phosphates are formed during metabolism of the calcium-mobilizing messenger, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3)], to lower and higher phosphorylated derivatives. The cloning of several phospholipase-C isozymes, as well as the Ins(1,4,5)P3-5 kinase and the Ins(1,4,5)P3 receptor, have clarified several aspects of the diversity and complexity of the phosphoinositide-calcium signaling system. In addition to their well-established roles in hormonal activation of cellular responses such as secretion and contraction, phospholipids and their hydrolysis products have been increasingly implicated in the actions of growth factors and oncogenes on cellular growth and proliferation.  相似文献   

9.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

10.
  • 1.1. The mobilization of Ca2+ from intracellular stores by d-myo-inositol 1,4,5-triphosphate[Ins(1,4,5)P3] is now widely accepted as the primary link between plasma membrane receptors that stimulate phospholipase C and the subsequent increase in intracellular free Ca2+ that occurs when such receptors are activated (Berridge, 1993). Since the observations of VoIpe et al. (1985) which showed that Ins(1,4,5)P3 could induce Ca2+ release from isolated terminal cisternae membranes and elicit contracture of chemically skinned muscle fibres, research has focused on the role of Ins(1,4,5)P3 in the generation of SR Ca2+ transients and in the mechanism of excitation-contraction coupling (EC-coupling).
  • 2.2. The mechanism of signal transduction at the triadic junction during EC-coupling is unknown. Asymmetric charge movement and mechanical coupling between highly specialized triadic proteins has been proposed as the primary mechanism for voltage-activated generation of SR Ca2+ signals and subsequent contraction. Ins(1,4,5)P3 has also been proposed as the major signal transduction molecule for the generation of the primary Ca2+ transient produced during EC-coupling.
  • 3.3. Investigations on the generation of Ca2+ transients by Ins(1,4,5)P3 have been conducted on ion channels incorporated into lipid bilayers, skinned and intact fibres and isolated membrane vesicles. Ins(1,4,5)P3 induces SR Ca2+ release and the enzymes responsible for its synthesis and degradation are present in muscle tissue. However, the sensitivity of the Ca2+ release mechanism to Ins(l,4,5)P3 is highly dependent on experimental conditions and on membrane potential.
  • 4.4. While Ins(1,4,5)P3 may not be the major signal transduction molecule for the generation of the primary Ca2+ signal produced during voltage-activated contraction, this inositol polyphosphate may play a functional role as a modulator of EC-coupling and/or of the processes of myoplasmic Ca2+ regulation occurring on a time scale of seconds, during the events of contraction.
  相似文献   

11.
Metabolism of the putative messenger molecule d-myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] in plant cells has been studied using a soluble fraction from pea (Pisum sativum) roots as enzyme source and [5-32P]Ins(1,4,5)P3 and [2-3H]Ins(1,4,5)P3 as tracers. Ins(1,4,5)P3 was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol(4,5)bisphosphate [Ins(4,5)P2] whereas inositol(1,4)bisphosphate [Ins(1,4)P2] was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P4. Dephosphorylation of Ins(1,4,5)P3 to Ins(4,5)P2 was dependent on Ins(1,4,5)P3 concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P3 to Ins(4,5)P2 and Ins(1,4,5,X)P4 was inhibited by 55 micromolar Ca2+. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P3 and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.  相似文献   

12.
To respond to physical signals and endogenous hormones, plants use specific signal transduction pathways. We and others have previously shown that second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is used in abscisic acid (ABA) signaling, and that some mutants with altered Ins(1,4,5)P3 have altered responses to ABA. Specifically, mutants defective in the myo-inositol polyphosphate 5-phosphatases (5PTases) 1 and 2 genes that hydrolyze 5-phosphates from Ins(1,4,5)P3 and other PtdInsP and InsP substrates, have elevated Ins (1,4,5)P3, and are ABA-hypersensitive. Given the antagonistic relationship between ABA and gibberellic acid (GA), we tested the response of these same mutants to a GA synthesis inhibitor, paclobutrazol (PAC). We report here that 5ptase1, 5ptase2 and 5ptase11 mutants are hypersensitive to PAC, suggesting a relationship between elevated Ins(1,4,5)P3 and decreased GA signal transduction. These data provide insight into signaling cross-talk between ABA and GA pathways.Key words: inositol, phosphatidylinositol phosphate, paclobutrazol, gibberellic acid, inositol trisphosphate, paclobutrazol  相似文献   

13.
A soluble extract from pea (Pisum sativum L.) roots, when incubated with ATP and inositol 1,4,5-trisphosphate, produced an inositol tetrakisphosphate. The chromatographic properties of this inositol tetrakisphosphate, and of the products formed by its chemical degradation, identify it as inositol 1,4,5,6-tetrakisphosphate. No evidence was obtained for a 3-phosphorylation of inositol 1,4,5-trisphosphate. The importance of these observations with respect to inositol phosphates and calcium signalling in higher plants, is discussed.Abbreviations HPLC high-performance liquid chromatography - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - InsP4 inositol tetrakisphosphate J.A.C. gratefully acknowledges support from the Agricultural and Food Research Council, U.K., Plant Molecular Biology Initiative.  相似文献   

14.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

15.
In WRK1 cells vasopressin stimulates Ins(1,4,5)P3 accumulation and mobilizes intracellular calcium. These two phenomena are transient and exhibit similar time-courses. Experiments performed on intact cells or membrane preparations demonstrate that calcium may also stimulate an accumulation of inositol phosphates. This suggests a possible positive feedback regulation of the primary accumulation of Ins(1,4,5)P3 induced by vasopressin. In order to test such a possibility we studied the vasopressin-induced Ins(1,4,5)P3 accumulation, where intracellular calcium mobilization is artificially suppressed by incubating the cells with EGTA in the presence of ionomycin. Under these conditions the accumulation of Ins(1,4,5)P3 induced by 1 microM vasopressin is inhibited by around 50% when measured 5 s after stimulation. This inhibition is not due to an alteration of the VIa vasopressin receptor binding properties, a reduction of the amount of substrate available for the phospholipase C, a stimulation of the Ins(1,4,5)P3 5-phosphatase or an activation of the Ins(1,4,5,)P3 kinase. It is more likely the consequence of the suppression of calcium wave generated by Ins(1,4,5)P3 which may in its turn stimulate a phospholipase C. Different arguments favour this hypothesis: (1) calcium at an intracellular physiological concentration (0.1-1 microM) is able to stimulate a phospholipase C; (2) artificially increasing the [Ca2+]i inside the WRK1 cell induces an accumulation of Ins(1,4,5)P3; and (3) the time-course of the inhibition of Ins(1,4,5)P3 accumulation induced by an EGTA/ionomycin treatment correlates well with that of the calcium mobilization. Altogether these results suggest that Ins(1,4,5)P3 accumulation in WRK1 cells may result from two distinct mechanisms: a direct vasopressin receptor-mediated PLC activation which is independent of calcium and a calcium-mediated PLC activation related to the intracellular calcium mobilization.  相似文献   

16.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

17.
Inositol-1,4,5-trisphosphate 3-kinase-A (itpka) accumulates in dendritic spines and seems to be critically involved in synaptic plasticity. The protein possesses two functional activities: it phosphorylates inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) and regulates actin dynamics by its F-actin bundling activity. To assess the relevance of these activities for neuronal physiology, we examined the effects of altered itpka levels on cell morphology, Ins(1,4,5)P3 metabolism and dendritic Ca2 + signaling in hippocampal neurons. Overexpression of itpka increased the number of dendritic protrusions by 71% in immature primary neurons. In mature neurons, however, the effect of itpka overexpression on formation of dendritic spines was weaker and depletion of itpka did not alter spine density and synaptic contacts. In synaptosomes of mature neurons itpka loss resulted in decreased duration of Ins(1,4,5)P3 signals and shorter Ins(1,4,5)P3-dependent Ca2 + transients. At synapses of itpka deficient neurons the levels of Ins(1,4,5)P3-5-phosphatase (inpp5a) and sarcoplasmic/endoplasmic reticulum calcium ATPase pump-2b (serca2b) were increased, indicating that decreased duration of Ins(1,4,5)P3 and Ca2 + signals results from compensatory up-regulation of these proteins. Taken together, our data suggest a dual role for itpka. In developing neurons itpka has a morphogenic effect on dendrites, while the kinase appears to play a key role in shaping Ca2 + transients at mature synapses.  相似文献   

18.
Although activation of muscarinic cholinergic receptors on 1321N1 human astrocytoma cells results in a linear accumulation of inositol phosphates for up to 60 min in the presence of LiCl [Masters, Quinn & Brown (1985) Mol. Pharmacol. 27, 325-332], activation of H1-histamine receptors resulted in an increase in total inositol phosphate formation that was maintained for less than 5 min. The effects of stimulation of these two receptors on accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were also examined. Incubation of 1321N1 cells with carbachol resulted in a rapid accumulation of all three inositol phosphates, reaching a maximum within 30 s; this elevated value was maintained for up to 60 min. The rate of disappearance of Ins(1,3,4)P3 from carbachol-treated cells after the addition of atropine paralleled or exceeded the rate of disappearance of Ins(1,4,5)P3. Although the initial rates of accumulation of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1,3,4,5)P4 in the presence of histamine were similar to that observed with carbachol, the amounts of these inositol phosphates had returned to control values within 5 min after the addition of histamine. The results indicate that, although the acute effects of muscarinic receptor and H1-histamine receptor stimulation on phosphoinositide hydrolysis are very similar, the histamine receptor is desensitized rapidly, whereas the muscarinic receptor is not. This effect on histamine-receptor function is apparently homologous, since preincubation of 1321N1 cells with histamine did not decrease the subsequent response to carbachol.  相似文献   

19.
Injection of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) into voltage-clamped oocytes of Xenopus laevis elicited an oscillatory chloride membrane current. This response did not depend upon extracellular calcium, because it could be produced in calcium-free solution and after addition of cobalt to block calcium channels in the surface membrane. However, it was abolished after intracellular loading with the calcium chelating agent EGTA, indicating a dependence upon intracellular calcium. The mean dose of Ins(1,3,4,5)P4 required to elicit a threshold current was 4 x 10(-14) mol. In comparison, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) gave a similar oscillatory current with doses of about one twentieth as big. Hyperpolarization of the oocyte membrane during activation by Ins(1,3,4,5)P4 elicited a transient inward current, as a result of the opening of calcium-dependent chloride channels subsequent to the entry of external calcium. In some oocytes the injection of Ins(1,3,4,5)P4 was itself sufficient to allow the generation of the transient inward current, whereas in others a prior injection of Ins(1,4,5)P3 was required. We conclude that Ins(1,3,4,5)P4 causes the release of intracellular calcium from stores in the oocyte, albeit with less potency than Ins(1,4,5)P3. In addition, Ins(1,3,4,5)P4 activates voltage-sensitive calcium channels in the surface membrane, via a process that may require 'priming' by Ins(1,4,5)P3.  相似文献   

20.
The effects of L-glutamate, acetylcholine, and serotonin (5HT) were examined on generation of inositol 1,4,5-triphosphate [Ins(1,4,5)P3], in membrane preparations of the cestode Hymenolepis diminuta. Only L-glutamate and acetylcholine stimulated a significant elevation in Ins(1,4,5)P3. The response to L-glutamate was stereospecific; D-glutamate or L-aspartate were not as potent.A role for G-protein(s) was supported by the observations that sodium fluoride stimulated Ins(1,4,5)P3 generation, and the L-glutamate response was potentiated by GTP and GTP-S and was suppressed by GDPS. However, studies with pertussis and cholera toxins indicated that the putative G-protein(s) was not pertussis or cholera toxin sensitive.The pharmacological profile of the L-glutamate response was examined partially. Trans-ACPD was a very effective agonist at 10−5M. While 10−3M L-glutamate, NMDA, and AMPA significantly elevated Ins(1,4,5)P3 levels, quisqualate and kainate did not. The elevation of Ins(1,4,5)P3 levels by L-glutamate and NMDA was antagonized by the specific glutamatergic antagonists AP-5, AP-7, CNQX, and CPP. While the response to ACPD was antagonized by AP5, CPP and CPG, CNQX was without effect.Collectively, the data support the hypothesis that in the cestode H. diminuta, L-glutamate activation of a metabotropic (ACPD) and/or ionotropic-like AMPA/NMDA receptor subtypes proceeds via a G protein(s) to enhance phospholipase C activity, ultimately resulting in the elevation of Ins(1,4,5)P3 levels in the tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号