首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Circulating chemokines in patients with autoimmune thyroid diseases.   总被引:2,自引:0,他引:2  
Chemokines are a group of small proteins that recruit different leukocyte subtypes to sites of inflammation and play important roles in initiating and maintaining immunological responses in autoimmune endocrine diseases including Graves' disease (GD) and Hashimoto's thyroiditis (HT). Previous studies have found increased gene and protein expression of different kinds of chemokines not only within the thyroid gland but also within thyroid cells in GD or HT patients. A few studies have determined serum levels of chemokines, with conflicting results. We measured circulating concentrations of CCL2, CCL5, CXCL9, and CXCL10 in patients with GD, HT, and nontoxic nodular thyroid disease (NNT). While CCL2 and CXCL9 concentrations were comparable in patients with either AITD or NNT, CCL5 was significantly increased in GD patients compared with HT or NNT subjects. In contrast, CXCL10 levels were lower in patients with GD, but the difference was statistically significant only when compared with patients with HT (p=0.0018). Importantly, GD patients who relapsed or went into remission had significantly different levels of CXCL9 (p=0.0252). Serum levels of CCL2, CCL5, CXCL9, and CXCL10 did not reveal any correlation with thyroid volume; with the levels of thyrotropin (TSH), FT3, or FT4; or with the titers of TSH receptor antibody and thyroperoxidase antibody. These data suggest that the expression patterns of chemokines in various thyroid diseases differ from each other, which may reflect the distinct immune responses in HT and GD.  相似文献   

2.
Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR)α activation on the prototype Th1 [chemokine (C–X–C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C–C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells.The role of PPARα and PPARγ activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN)γ and tumor necrosis factor (TNF)α.IFNγ stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNFα alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFNγ and TNFα had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPARα activators inhibited the secretion of both chemokines (stimulated with IFNγ and TNFα) at a level higher (for CXCL10, about 60–72%) than PPARγ agonists (about 25–35%), which were confirmed to inhibit CXCL10, but not CCL2.Our data show that CCL2 is modulated by IFNγ and TNFα in GD and normal thyrocytes. Furthermore we first show that PPARα activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPARα may be involved in the modulation of the immune response in the thyroid.  相似文献   

3.
4.
Chemokines and their corresponding receptors are crucial for the recruitment of lymphocytes into the lymphoid organs and for its organization acting in a multistep process. Tissues affected by autoimmune disease often contain ectopic lymphoid follicles which, in the case of autoimmune thyroid disorders, are highly active and specific for thyroid Ags although its pathogenic role remains unclear. To understand the genesis of these lymphoid follicles, the expression of relevant cytokines and chemokines was assessed by real time PCR, immunohistochemistry and by in vitro assays in autoimmune and nonautoimmune thyroid glands. Lymphotoxin alpha, lymphotoxin beta, C-C chemokine ligand (CCL) 21, CXC chemokine ligand (CXCL) 12, CXCL13, and CCL22 were increased in thyroids from autoimmune patients, whereas CXCL12, CXCL13, and CCL22 levels were significantly higher in autoimmune glands with ectopic secondary lymphoid follicles than in those without follicles. Interestingly, thyroid epithelium produced CXCL12 in response to proinflammatory cytokines providing a possible clue for the understanding of how tissue stress may lead to ectopic follicle formation. The finding of a correlation between chemokines and thyroid autoantibodies further suggests that intrathyroidal germinal centers play a significant role in the autoimmune response. Unexpectedly, the percentage of circulating CXCR4(+) T cells and CCR7(+) B and T cells (but not of CXCR5) was significantly reduced in PBMCs of patients with autoimmune thyroid disease when they were compared with their intrathyroidal lymphocytes. This systemic effect of active intrathyroidal lymphoid tissue emerges as a possible new marker of thyroid autoimmune disease activity.  相似文献   

5.
T cell targeting immunotherapy is now considered in acute myelogenous leukemia (AML), and local recruitment of antileukemic T cells to the AML microcompartment will then be essential. This process is probably influenced by both intravascular as well as extravascular levels of T cell chemotactic chemokines. We observed that native human AML cells usually showed constitutive secretion of the chemotactic chemokines CXCL10 and CCL5, whereas CCL17 was only released for a subset of patients and at relatively low levels. Coculture of AML cells with nonleukemic stromal cells (i.e., fibroblasts, osteoblasts) increased CXCL10 and CCL17 levels whereas CCL5 levels were not altered. However, a wide variation between patients in both CXCL10 and CCL5 levels persisted even in the presence of the stromal cells. Neutralization of CXCL10 and CCL5 inhibited T cell migration in the presence of native human AML cells. Furthermore, serum CCL17 and CXCL10 levels varied between AML patients and were determined by disease status (both chemokines) as well as patient age, chemotherapy and complicating infections (only CCL17). Thus, extravascular as well as intravascular levels of T cell chemotactic chemokines show a considerable variation between patients that may be important for T cell recruitment and the effects of antileukemic T cell reactivity in local AML compartments.  相似文献   

6.
Increased levels of chemokines and prostaglandins have been reported in patients with inflammatory bowel disease, although their changes during disease development are less understood. The aim of this study was to investigate the local production of nine selected chemokines and prostaglandin E(2) (PGE(2)) to elucidate their role in colitis progression in BALB/c and C57BL/6 mice exposed to dextran sulphate sodium. The acute inflammation in both strains was accompanied by a significant up-regulation of CXCL1, CXCL2/3, CXCL10, CCL2, CCL4 and CCL22 and a downregulation of PGE(2). In the recovery phase in BALB/c, one-week post-DSS, PGE(2) levels were significantly increased with a concomitant downregulation of CXCL1, CXCL2/3, CXCL10, CCL2, and CCL4. In contrast, in C57BL/6 mice CXCL1, CXCL2/3, CXCL10, CCL2, CCL3 and CCL4 production remained high during the chronic phase, without any up-regulation of PGE(2). In addition, CCL5 was significantly increased at d26 and 33 compared to d5. Interestingly, the number of macrophages was significantly increased during the acute phase, whereas T cells were significantly increased in both the acute and chronic phase in C57BL/6 mice. Thus, our results show that chemokines are produced in a dynamic manner during colitis progression.  相似文献   

7.
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.  相似文献   

8.
Lymphocytic infiltrates and lymphoid follicles with germinal centers are often detected in autoimmune thyroid disease (AITD), but the mechanisms underlying lymphocyte entry and organization in the thyroid remain unknown. We tested the hypothesis that CCL21, a chemokine that regulates homeostatic lymphocyte trafficking, and whose expression has been detected in AITD, is involved in the migration of lymphocytes to the thyroid. We show that transgenic mice expressing CCL21 from the thyroglobulin promoter (TGCCL21 mice) have significant lymphocytic infiltrates, which are topologically segregated into B and T cell areas. Although high endothelial venules expressing peripheral lymph node addressin were frequently observed in the thyroid tissue, lymphocyte recruitment was independent of L-selectin or lymphotoxin-alpha but required CCR7 expression. Taken together, these results indicate that CCL21 is sufficient to drive lymphocyte recruitment to the thyroid, suggest that CCL21 is involved in AITD pathogenesis, and establish TGCCL21 transgenic mice as a novel model to study the formation and function of lymphoid follicles in the thyroid.  相似文献   

9.
American cutaneous leishmaniasis (ACL) presents distinct active clinical forms with different grades of severity, known as localised (LCL), intermediate (ICL) and diffuse (DCL) cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th)1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC) migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.  相似文献   

10.
Certain chemokines possess anti-angiogenic and antibacterial activity, in addition to their ability to recruit leukocytes. Herein, we demonstrate that CXCL9/MIG induces the expression, by a monocytic cell line and peripheral blood mononuclear cells, of a variety of chemokines including CXCL8/IL-8, CCL3/MIP-1α, CCL4/MIP-1β, CCL2/MCP-1 in a pertussis toxin insensitive manner. Similarly, another cationic chemokine CCL20/MIP-3α, but not the non-cationic chemokines CCL2 or CCL3, stimulated monocytic cells to produce substantial amounts of CXCL8 and CCL3. Microarray experiments demonstrated that CXCL9, but not CCL2, induced the expression of hundreds of genes, many of which have known or proposed immunomodulatory functions. Induction of CXCL8 required the p38 and ERK1/2 mitogen-activated protein kinases but not NFκB, JAK-STAT or JNK signaling pathways. These results collectively demonstrate that CXCL9 has immunomodulatory functions that are not mediated through a G-protein coupled receptor and may possess additional roles in host defenses against infection.  相似文献   

11.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

12.
Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS).  Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed.  Increased levels of chemokines in the cerebrospinal fluid (CSF) can report on inflammatory processes occurring in the cerebral cortex of MS patients.  A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21) and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11) chemokines in a small pilot study.  Paired CSF and serum samples were obtained from healthy controls (n=12), relapsing-remitting MS (RRMS) (n=21) and SPMS (N=12). A subset of the RRMS patients (n = 9) was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS.     相似文献   

13.
We describe a model of severe acute respiratory syndrome-coronavirus (SARS-CoV) infection in C57BL/6 mice. A clinical isolate of the virus introduced intranasally replicated transiently to high levels in the lungs of these mice, with a peak on day 3 and clearance by day 9 postinfection. Viral RNA localized to bronchial and bronchiolar epithelium. Expression of mRNA for angiotensin converting enzyme 2, the SARS-CoV receptor, was detected in the lung following infection. The virus induced production in the lung of the proinflammatory chemokines CCL2, CCL3, CCL5, CXCL9, and CXCL10 with differential kinetics. The receptors for these chemokines were also detected. Most impressively, mRNA for CXCR3, the receptor for CXCL9 and CXCL10, was massively up-regulated in the lungs of SARS-CoV-infected mice. Surprisingly Th1 (and Th2) cytokines were not detectable, and there was little local accumulation of leukocytes and no obvious clinical signs of pulmonary dysfunction. Moreover, beige, CD1-/-, and RAG1-/- mice cleared the virus normally. Infection spread to the brain as it was cleared from the lung, again without leukocyte accumulation. Infected mice had a relative failure to thrive, gaining weight significantly more slowly than uninfected mice. These data indicate that C57BL/6 mice support transient nonfatal systemic infection with SARS-CoV in the lung, which is able to disseminate to brain. In this species, proinflammatory chemokines may coordinate a rapid and highly effective innate antiviral response in the lung, but NK cells and adaptive cellular immunity are not required for viral clearance.  相似文献   

14.

Background

Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium.

Methods and Results

Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes.

Conclusions

Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.  相似文献   

15.
Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production.  相似文献   

16.
Atopic dermatitis is a skin condition resulting in a skin rash from exposure to environmental factors. Skin biopsies taken from patients suffering from atopic dermatitis were micro-dissected and analyzed using a microchip-based immunoaffinity CE system for the presence of CXCL1, CXCL5 and CXCL8 and CCL1, CCL3 and CCL5 chemokines. Disposable immunoaffinity disks with immobilized antibodies were used to capture the CXC and CC chemokines from the homogenized skin samples. The captured analytes were then labeled with AlexaFluor 633, eluted from the disk and separated by CE. The labeled chemokines were identified and quantified by laser induced fluorescence. The total analysis time was less than 40min, including the biopsy microdissection, pre-analysis preparation of the sample and the ICE-CHIP analysis, which took less than 10min with inter- and intra-assay CV's below 6.4%. Microchip-based immunoaffinity CE could distinguish between normal skin biopsies and those with inflammation. Patients with neutrophil cellular infiltrates by histopathology showed increased concentrations of CXCL1, CXCL5 and CXCL8 while increases of CCL1, CCL3 and CCL5 corresponded to the patient group demonstrating monocytic and T-lymphocyte infiltration by histopathology. This system demonstrates the ability to identify and quantify immunochemical analytes in frozen sections taken from clinical histopathology samples.  相似文献   

17.
Chemokines are important in leukocyte homeostasis, inflammation, angiogenesis, and metastasis. Here, the molecular diversity of chemokines present in ovarian carcinoma was studied by purifying the proteins to homogeneity from ascitic fluid. Biologically active intact CCL2 and processed CXCL8, CCL3, and CCL18 isoforms were recovered. CCL7 and CCL20 were also purified, but their levels were 10-fold lower compared with CXCL8, CCL2, and CCL3 and even 100-fold lower than the amounts of CCL18 isolated. In ascitic fluids from patients with ovarian carcinoma (n = 12), significantly higher levels of CXCL8 and CCL18 (2.0 versus 0.7 ng/ml (p = 0.01) and 120 versus 44 ng/ml (p = 0.0002), respectively) were detected compared with those in nonovarian carcinoma patients (n = 12). In contrast to CXCL8, CCL18 was not inducible in carcinoma cell lines. Immunostaining showed CCL18 expression in tumor-infiltrating cells with monocyte/macrophage morphology but not in the ovarian carcinoma cells. Our data demonstrate that biochemically heterogenous but biologically active forms of several chemokines are present at different concentrations in ovarian carcinoma ascitic fluid. This points to a delicate balance of chemokines in epithelial ovarian cancer and to a potentially major role for CXCL8 and CCL18 in this tumor.  相似文献   

18.
Asthma and chronic obstructive pulmonary disease (COPD) are associated with Th2 and Th1 differentiated T cells. The cytokine thymic stromal lymphopoietin (TSLP) promotes differentiation of Th2 T cells and secretion of chemokines which preferentially attract them. We hypothesized that there is distinct airways expression of TSLP and chemokines which preferentially attract Th1- and Th2-type T cells, and influx of T cells bearing their receptors in asthma and COPD. In situ hybridization, immunohistochemistry, and ELISA were used to examine the expression and cellular provenance of TSLP, Th2-attracting (TARC/CCL17, MDC/CCL22, I-309/CCL1), and Th1-attracting (IP-10/CXCL10, I-TAC/CXCL11) chemokines in the bronchial mucosa and bronchoalveolar lavage fluid of subjects with moderate/severe asthma, COPD, and controls. Cells expressing mRNA encoding TSLP, TARC/CCL17, MDC/CCL22, and IP-10/CXCL10, but not I-TAC/CXCL11 and I-309/CCL1, were significantly increased in severe asthma and COPD as compared with non-smoker controls (p < 0.02). This pattern was reflected in bronchoalveolar lavage fluid protein concentrations. Expression of the same chemokines was also increased in ex- and current smokers. The cellular sources of TSLP and chemokines were strikingly similar in severe asthma and COPD. The numbers of total bronchial mucosal T cells expressing the chemokine receptors CCR4, CCR8, and CXCR3 did not significantly differ in asthma, COPD, and controls. Both asthma and COPD are associated with elevated bronchial mucosal expression of TSLP and the same Th1- and Th2-attracting chemokines. Increased expression of these chemokines is not, however, associated with selective accumulation of T cells bearing their receptors.  相似文献   

19.
Immune responses in the central nervous system (CNS) are carefully regulated. Despite the absence of most immune processes and a substantive blood brain barrier, potent immune responses form during infection and autoimmunity. Astrocytes are innate immune sentinels that ensheath parenchymal blood vessels and sit at the gateway to the CNS parenchyma. Viral and bacterial infections trigger the influx of distinct leukocyte subsets. We show that astrocytes alone are sufficient for distinguishing between these two main types of infection and triggers release of relevant chemokines that relate to the microbe recognised. Bacterial-associated molecules induced the preferential expression of CCL2, CXCL1, CCL20 and CCL3 whilst a virus-associated dsRNA analogue preferentially up-regulated CXCL10 and CCL5. Thus, astrocytes can respond to infection in a distinct and appropriate manner suggesting they have the capacity to attract appropriate sets of leukocytes into the brain parenchyma. Astrocytes themselves are unable to respond to these chemokines since they were devoid of most chemokine receptors but expressed CXCR4, CXCR7 and CXCR6 at rest. Stimulation with TGF-β specifically up-regulated CXCR6 expression and may explain how TGF-β/CXCL16-expressing gliomas are so effective at attracting astroglial cells.  相似文献   

20.
Borrelia burgdorferi, the agent of Lyme disease, promotes proinflammatory changes in the endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, 7 of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by the endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed the endothelium exposed to B. burgdorferi and IFN-gamma, as compared with unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across the B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号