首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clear separation of retinol, retinal, and retinoic acid has been achieved by liquid-gel partition chromatography on Sephadex LH-20 with solvent mixtures of chloroform, Skellysolve B, and methanol. A mixture of retinyl esters, retinol, retinal, and retinoic acid has been resolved on hydroxyalkoxypropyl Sephadex using Skellysolve B and acetone. There is no decomposition of any of the vitamin A compounds during chromatography, and recovery is complete. The combination of mildness and potential for resolution makes liquid-gel partition chromatography a superior tool for the separation of vitamin A compounds. This method has been applied to the study of vitamin A metabolism at physiological levels in the vitamin A-deficient rat. Retinyl palmitate, an ester of retinoic acid, retinal, retinol, retinoic acid, and a polar metabolite have been demonstrated in various tissues of the rat 12 hr after a dose of 2 micro g of [11-(14)C]retinyl acetate.  相似文献   

2.
Highly purified sinusoidal (fat-storing, Kupffer and endothelial cells) and parenchymal cells were isolated to assess the cellular distribution of vitamin A in liver of adult vitamin A-sufficient rats. A modified simple procedure was developed for the purification of fat-storing cells from rat liver. This was achieved by a single centrifugation step in a two-layer density Nycodenz gradient. Endothelial and Kupffer cells were obtained from the same gradient and further purified by centrifugal elutriation. Reverse-phase HPLC analysis showed that fat-storing cells contained about 300-fold the amount of retinyl esters present in parenchymal cells on a mg cell protein basis. In fat-storing cells, the same retinyl esters, viz. retinyl palmitate, retinyl stearate and retinyl oleate, were present as in whole liver. It was also observed that, within 12 h after intravenous injection of chylomicron [3H]retinyl ester, most of the radioactivity had accumulated in the fat-storing cells. It is concluded that fat-storing cells are the main storage sites for vitamin A in rat liver.  相似文献   

3.
5,6-Epoxyretinoic acid was detected in small intestine, kidney, liver, testes and serum of vitamin A-deficient rats 3 h after a single physiological dose of [3H]retinoic acid. The maximum concentration of 5,6-epoxide in intestinal mucosa was observed 3 h after intrajugular administration of retinoic acid. However, at 7 h post administration, no 5,6-epoxyretinoic acid was detected in mucosa, demonstrating the rapid intestinal metabolism or excretion of this metabolite. No 5,6-epoxy[3H]retinoic acid was detected in mucosa, liver or serum of retinoic acid-repleted rats 3 h after administration of 2 micrograms of [3H]retinoic acid.  相似文献   

4.
All-trans-[3H]retinyl acetate has been shown to be metabolized to all-trans-[3H]retinoic acid in a target tissue of vitamin A action, the hamster trachea in organ culture. That the compound produced is indeed all-trans-retinoic acid is demonstrated by chromatography of the biosynthetically produced retinoic acid with synthetic all-trans-retinoic acid in two different high-pressure liquid chromatographic systems, either as the free acids in a reverse-phase system or as the methyl esters in a normal-phase system. The all-trans-[3H]retinoic acid was also found in the tracheal epithelium and cartilage as well as in the medium. In addition the tracheal tissue also contained retinyl palmitate and other esters. Finally, further in vitro metabolism of [3H]retinyl acetate paralleled the metabolism of [3C]retinoic acid suggesting that these two compounds are being metabolized through similar pathways.  相似文献   

5.
All-trans [11-3H]4,4-difluororetinyl acetate was synthesized by treating methyl all-trans [11-3H]4-oxoretinoate with diethylaminosulfurtrifluoride, followed by reduction and acetylation of the product. After oral administration of the radioactive difluoro analog in oil to rats, difluororetinol, difluororetinyl palmitate and related esters, 4-oxoretinol, 4-oxoretinoic acid and polar conjugated derivatives were identified in the intestine, liver, kidney and / or blood. The major metabolic products were difluororetinyl palmitate and related esters, which were stored in the liver. The presence of the difluoro analog in liver oil from treated rats was confirmed by 19F-NMR spectroscopy. Neither retinol nor retinyl esters were detected as products of the metabolism of the difluoro analog. Nonetheless, all-trans difluororetinyl acetate showed 26 ± 12% of the biological activity of all-trans retinyl acetate in the rat growth assay. Presumably, the difluoro analog is active per se in growth rather than by conversion to retinol or to one of its known growth-promoting metabolites. In general, however, the difluoro analog was metabolized in a manner very similar to vitamin A. The vitamin A moiety of administered difluororetinyl acetate and retinyl acetate was poorly stored (1.8–3.3%) in the liver of vitamin A-depleted rats, confirming and extending past reports that the liver storage mechanism is severely impaired when initial liver stores are very low.  相似文献   

6.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

7.
Vitamin A-deficient rats were given a single intrajugular injection of 1 mg all-trans-[11-3H]retinoic acid and 3 h later the rats were killed. The small intestines were extracted and chromatographed by high-performance liquid chromatography to yield distinct metabolites. These were quantitated using the assumption that the specific activity of the metabolite is equal to that of the parent [3H]retinoic acid. The biological activity of all discernible metabolities was determined in the vitamin A-deficient female rat by vaginal smear assay. Retinoic acid and retinoyl-β-glucuronide from the preparation had equal activity while no activity was found for any of the other metabolite fractions. Thus, no evidence for an unknown metabolite having potent epithelial differentiating activity could be found in this target tissue of vitamin A action.  相似文献   

8.
The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [3H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. Our data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin.  相似文献   

9.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

10.
Following uptake of chylomicron remnant retinyl esters by the macrophage cell line J774, the retinyl esters are hydrolyzed to retinol before retinol is further metabolized to retinal and the various retinoic acid isoforms. One hour after the addition of chylomicron remnant [3H]retinyl esters to the cells, the percentage of cell-associated radioactivity in the retinyl ester fraction had decreased from approximately 90% to approximately 40%, whereas the radioactivity in the retinol fraction increased correspondingly. After 4 hours of incubation, more than 79% of the radioactive retinyl esters had been hydrolyzed to retinol. When we measured incorporation of radioactivity in the protein fraction, we observed that the level of [3H]retinoylated proteins increased rapidly the first 4 hours, and then continued to increase at a lower rate up to 24 hours, when approximately 0.6% of the cell-associated radioactivity was covalently bound to protein. These data suggest that approximately 0.18% of all the cellular proteins might be retinoylated under such conditions. In summary, in the present study we have demonstrated that retinoids taken up by a macrophage cell line as chylomicron remnant retinyl esters, a physiologic plasma transport molecule for vitamin A, might be covalently linked to proteins. Such retinoylation might be relevant both for normal function, as well as for the toxic and teratogenic effects of vitamin A.  相似文献   

11.
Corneas of normal and vitamin A-deficient rabbits were treated topically with [11, 12-3H] retinol or [11, 12-3H] all-trans retinoic acid. Methanol extracts of these corneas were analyzed by high pressure liquid chromatography. Radiolabeled compounds were extracted from the corneas which co-migrated chromatographically with known retinoid standards. In agreement with studies on other tissues and organs, retinol was metabolized to retinoic acid and more polar compounds by corneas of normal and vitamin A-deficient rabbits. All-trans retinoic acid was isomerized to 13-cis retinoic acid in normal rabbit corneas; however, this trans-cis isomerization did not occur in vitamin A-deficient, xerophthalmic corneas.  相似文献   

12.
Biliary metabolites from physiological doses of all-trans-[10-3H]retinoic acid were examined in normal and vitamin A-deficient rats. The bile from normal and vitamin A-deficient rats contained approximately 60% of the administered dose following a 24-h collection period. However, vitamin A-deficient rats show a 6-h delay in the excretion of radioactivity compared to normal rats. Retinoyl-beta-glucuronide excretion was particularly sensitive to the vitamin A status of the rats. In normal rats, retinoyl-beta-glucuronide reached a maximum concentration of 235 pmol/ml of bile 2 h following the dose and then rapidly declined. Vitamin A-deficient rats show a relatively constant concentration of this metabolite (100-150 pmol/ml of bile) over a 10-h collection period. Retinoic acid excretion was low in both normal and deficient rats. The concentration of retinotaurine, a recently identified biliary metabolite, was approximately equal to retinoyl-beta-glucuronide in normal rats and appeared in the bile 2 h later than the glucuronide.  相似文献   

13.
Polar metabolites of retinoic acid accumulate in the intestine of vitamin A-deficient rats 3 h after administration of 450 μg of [11,12-3H]retinoic acid. Using new Chromatographic procedures developed for the purification of vitamin A metabolites, a major polar derivative of retinoic acid was isolated from intestine in pure form as its methyl ester and positively identified as 5,8-oxyretinoic acid.  相似文献   

14.
All-trans-[11-3H]retinyl beta-glucuronide (all-trans-[11-3H]ROG) was synthesized from [3H]retinol by an improved synthetic procedure. After its intraperitoneal injection into rats, ROG is initially found as the predominant labelled component in the serum, but then is distributed to the liver, intestine, kidney and other organs of the body. Esters of vitamin A, which constituted the major metabolite of ROG, were detected in the liver as well as in other tissues. Of the labelled vitamin A esters derived from tritiated ROG in the liver and intestine, about 50% contained 5,6-epoxyretinol, which was characterized by its chromatographic behaviour, formation of an acetyl ester and lack of reactivity with diazomethane. Thus ROG, although converted to retinol in vivo, might also act physiologically in an intact form.  相似文献   

15.
1. A comparison was made of the nature and intestinal intracellular distribution of the metabolites formed in vitamin D-deficient chicks from [4-(14)C]cholecalciferol and [1-(3)H]cholecalciferol. 2. The simultaneous administration of the two radioactive substances showed the presence in blood, liver, intestine, kidney and bone of cholecalciferol, its ester, 25-hydroxycholecalciferol and a further metabolite of cholecalciferol more polar than 25-hydroxycholecalciferol. The (3)H/(14)C ratios in these four radioactive components were the same as that of the dosed material (4.7:1) with the exception of the most polar material. The (3)H/(14)C ratio was lower in the fourth, most polar, metabolite (0.4:1-1.8:1) in all tissues examined, with the exception of blood. 3. In the chick intestine the polar metabolite accounted for almost 70% of the radioactivity in this tissue after a dose of 0.5mug. of [4-(14)C,1-(3)H]cholecalciferol. This polar metabolite from the intestine also had the lowest (3)H/(14)C ratio of all the tissues. It appears that in the chick intestine the polar metabolite reaches a maximum concentration of 1ng./g. of tissue, above which it cannot be increased irrespective of the dose of the vitamin. 4. The intestinal intracellular organelle with the highest concentration of (14)C radioactivity is the nucleus, and this radioactivity is almost entirely due to the polar metabolite with the lowered (3)H/(14)C ratio, in this case <0.2:1. It appears to be further localized in the chromatin of the nuclei. However, about half of the polar metabolite in the intestine is extranuclear. 5. Double-labelled 25-hydroxycholecalciferol was prepared and after its administration to vitamin D-deficient chicks the polar metabolite with the lowered (3)H/(14)C ratio was detected in liver, kidney, intestine, bone, muscle and heart. 6. None of the polar metabolite with the lowered (3)H/(14)C ratio was detected 16hr. after dosing with either the double-labelled vitamin or the double-labelled 25-hydroxycholecalciferol in blood and adipose tissue of vitamin D-deficient chicks, nor in the intestine, liver and kidney of supplemented birds. 7. The reasons for this loss of (3)H relative to (14)C are discussed in relation to possible chemical structures of this new polar metabolite.  相似文献   

16.
Rat tracheal explants maintained as organ cultures exhibited a normal mucocillary epithelium for at least 46 days in the presence of retinyl acetate. In the absence of vitamin A the explant epithelium became quiescent or underwent a metaplastic change to a keratinizing squamous epithelium. This process was accelerated if explants were derived from vitamin A-deficient animals. Autoradiographic examination showed that [3H]glucosamine label accumulated in various cell types in the explant, but especially in the epithelium. It was found that the explants secreted mucous glycoproteins into the medium and that the production and biochemical characteristics of a specific mucin fraction were dependent upon the vitamin A status of the explant.  相似文献   

17.
The tissue concentrations and distribution of radioactivity present in retinol and its metabolites were investigated in vitamin A-deficient rats 24h after injection of physiological doses (10mug) of [6, 7-14C2, 11,12-3H2] retinol. The highest concentration of radioactivity was observed in the adrenals, followed by kidney, spleen, liver, intestine and blood. The total radioactivity was greatest in urine, followed in descending order by liver, kidney, blood and intestine. The 14C/3H ratios of crude light-petroleum extracts in the liver, intestines, lungs, heart and faeces were similar to the ratio of the injected retinol dispersion. However, the 14C/3H ratios in the adrenals, kidney, spleen, blood, brain and urine were quite different from that of injected retinol. Alumina chromatography of the kidney and intestinal extracts demonstrated that retinol and retinyl palmitate are the principal forms of vitamin A present. However, alumina chromatography of the liver extract did not reveal the presence of retinol but yielded a major compound with a low 14C/3H ratio. That this compound was not retinol was shown by its inability to react with ethanolic HC1 to yield anhydroretinol. The distribution of radioactivity in ether-soluble, acidic and water-soluble fractions of urine indicated that most of the radioactivity was present in the acidic and water-soluble fractions. The 14C/3H ratios in ether-soluble and acidic fractions were higher than that of injected retinol, whereas in the water-soluble fraction the ratio was similar to the injected material.  相似文献   

18.
Metabolism of retinoids by embryonal carcinoma cells   总被引:4,自引:0,他引:4  
Several embryonal carcinoma (EC) cell lines were tested in culture for their ability to metabolize all-trans-[3H]retinol, all-trans-[3H]retinyl acetate, and all-trans-[3H]retinoic acid. There was little, if any, metabolism of all-trans-retinol to more polar compounds; we failed to detect conversion to acidic retinoids by reverse-phase high performance liquid chromatography and derivatization. We also did not observe [3H]retinoic acid when EC cells were incubated with [3H]retinyl acetate. Unlike the other retinoids, all-trans-[3H]retinoic acid, even at micromolar levels, was almost totally modified by cells from several EC lines within 24 h. Most of the labeled products were secreted into the medium. Some EC lines metabolized retinoic acid constitutively, whereas others had an inducible enzyme system. A differentiation-defective line, which contains little or no cellular retinoic acid-binding protein activity, metabolized retinoic acid poorly, even after exposure to inducers. At least eight retinoic acid metabolites were generated; many contain hydroxyl residues. Our data lead us to propose that retinol does not induce differentiation of EC cells in vitro via conversion to retinoic acid. Also, the relatively rapid metabolism of retinoic acid by EC cells suggests either that the induction of differentiation need involve only a transient exposure to this retinoid or that one or more of the retinoic acid metabolites can also promote differentiation.  相似文献   

19.
We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.  相似文献   

20.
Tracheal explants derived from vitamin A-deficient rats underwent keratinizine squamous metaplasia in organ culture when grown in serum-free medium. Within 1 d after the addition of 0.1, 2, or 10 microgram retinyl acetate per ml of medium, there was a concentration-dependent increase in the uptake of [3H]glucosamine and [14C]serine into both the total mucous glycoprotein and the principal purified mucin fraction eluted from a DEAE-Sephacel column with 0.2 M NaCl. The stimulation of mucin synthesis continued throughout the 21-d exposure period in a concentration-dependent fashion. It was also found that vitamin A had a greater effect on the incorporation of [3H]glucosamine than on [14C]serine into the secreted mucins, particularly at the higher retinyl acetate concentrations. This result indicated a greater effect of the vitamin on the synthesis of the carbohydrate moiety of the mucins. Morphological analysis by light and electron microscopy demonstrated that the keratinizing squamous epithelium began to revert to a mucus-secreting tissue as early as 24 h after addition of 10 microgram retinyl acetate to the medium. The response was slower with the lower vitamin concentrations. Stereological analysis revealed that the increase in the volume fraction of the Golgi apparatus reached a stable level which could not be altered with continued exposure to retinyl acetate, but that the volume fraction of mucin droplets continually increased and apparently did not reach a maximum in the 21-d exposure period. Conversely, the volume fraction of filament bundles and the number of desmosomes decreased during the vitamin A treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号