首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Scanning electron microscopy was applied to evaluate the influence of inoculum on efficiency of initial biofilm formation and reactor performance. Five anaerobic fixed-bed reactors were inoculated with anaerobic sludges from different sources and operated in parallel under identical conditions with defined wastewater and acetate, propionate and butyrate as constituents In all sludges Methanothrix sp. was the predominant acetotroph. The reactors inoculated with anaerobic sludge adapted to the wastewater achieved the highest space loading with 21.0 g COD/l·d after 58 days. The inoculation with granular sludge from an upflow anaerobic sludge blanket (UASB) reactor resulted in significantly less reactor efficiency. Time course of biofilm formation and biofilm thickness (ranging from 20–200 m) depended on the type of inoculum.  相似文献   

2.
The use of a down-flow fluidized bed (DFFB) reactor for the treatment of a sulfate-rich synthetic wastewater was investigated to obtain insight into the outcome of sulfate reduction in a biofilm attached to a plastic support under a down-flow regime. Fine low-density polyethylene particles were used as support for developing a biofilm within the reactor. The reactor treated a volatile fatty acids mixture of acetate or lactate, propionate, and butyrate at different chemical oxygen demand (COD) to sulfate ratios ranging from 1.67 to 0.67 (g/g). Organic loading rate changed from 2.5 to 5 g COD/L x day and sulfate loading rate increased from 1.5 to 7.3 g SO(4) (2-)/L x day. At the beginning of continuous operation, methanogenesis was the predominant process; however, after 187 days, sulfate reduction became the main ongoing biological process. After 369 days, a COD removal of 93% and a sulfate removal of 75% were reached. Total sulfide concentrations in the reactor ranged from 105, when the reactor was mainly methanogenic, to around 1,215 mg/L at the end of the experiment. The high sulfide concentrations did not affect the performance of the reactor. Results demonstrated that the configuration of the DFFB reactor was suitable for the anaerobic treatment of sulfate-rich wastewater.  相似文献   

3.
The biogenic production of hydrogen sulfide is a serious problem associated with wastewater treatment. The aim of this study was to investigate the inhibitory effect of nitrate on the dynamics of sulfate-reducing bacteria (SRB) community in a laboratory-scale wastewater reactor, originating from a denitrifying plant using activated sludge. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis targeting the dsrB (dissimilatory sulfite reductase) gene was used in combination with chemical analyses and measurement of oxidation and reduction potential (ORP). The reactors were initially dosed with 1.0 and 4.0 g/L potassium nitrate and anaerobically incubated for 490 h. Addition of 4.0 g/L nitrate to the reactor was associated with a prolonged inhibition (over 300 h, i.e., 12.5 days) of sulfate reduction and this was consistent with a rapid decrease in ORP associated with nitrate depletion. The DGGE analysis revealed that nitrate addition remarkably attenuated a distinct group of dsrB related to Desulfovibrio, whereas other dsrB groups were not influenced. Furthermore, another sulfate reduction by Syntrophobacter in the later stages of the incubation period occurred in both reactors (regardless of the nitrate concentration), suggesting that different SRB groups are associated with sulfate reduction at different stages of the wastewater treatment process.  相似文献   

4.
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB.  相似文献   

5.
The community structure of sulfate-reducing bacteria (SRB) and the contribution of SRB to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions were investigated by combining molecular techniques, molybdate inhibition batch experiments, and microelectrode measurements. A 16S rDNA clone library of bacteria populations was constructed from the biofilm sample. The 102 clones analyzed were grouped into 53 operational taxonomic units (OTUs), where the clone distribution was as follows: Cytophaga-Flexibacter-Bacteroides (41%), Proteobacteria (41%), low-G+C Gram-positive bacteria (18%), and other phyla (3%). Three additional bacterial clone libraries were also constructed from SRB enrichment cultures with propionate, acetate, and H2 as electron donors to further investigate the differences in SRB community structure due to amendments of different carbon sources. These libraries revealed that SRB clones were phylogenetically diverse and affiliated with six major SRB genera in the delta-subclass of the Proteobacteria. Fluorescent in situ hybridization (FISH) analysis revealed that Desulfobulbus and Desulfonema were the most abundant SRB species in this biofilm, and this higher abundance (ca. 2–4×109 cells cm–3 and 5×107 filaments cm–3, respectively) was detected in the surface of the biofilm. Microelectrode measurements showed that a high sulfate-reducing activity was localized in a narrow zone located just below the oxic/anoxic interface when the biofilm was cultured in a synthetic medium with acetate as the sole carbon source. In contrast, a broad sulfate-reducing zone was found in the entire anoxic strata when the biofilm was cultured in the supernatant of the primary settling tank effluent. This is probably because organic carbon sources diffused into the biofilm from the bulk water and an unknown amount of volatile fatty acids was produced in the biofilm. A combined approach of molecular techniques and batch experiments with a specific inhibitor (molybdate) clearly demonstrated that Desulfobulbus is a numerically important member of SRB populations and the main contributor to the oxidation of propionate to acetate in this biofilm. However, acetate was preferentially utilized by nitrate-reducing bacteria but not by acetate-utilizing SRB.  相似文献   

6.
通过把微生物区系组成的分子水平的动态变化情况与微生物群落的整体功能变化相关联,鉴定重要的功能类群是微生物分子生态学研究的一个重要的策略.应用分子生物学的方法,对一个实验室规模的用于降解喹啉的厌氧反应器生物膜样品的微生物区系组成变化进行解析,找出可能的主要功能菌.通过DGGE对反应器的种子污泥和运行稳定的厌氧生物膜反应器的微生物区系组成进行了对比分析,并对主要的优势条带进行了分子鉴定.同时对以上两个样品构建16S rDNA克隆文库,通过统计学分析对克隆文库的有效性进行验证,并对文库进行测序分析.DGGE条带及克隆文库的序列分析均表明,在驯化过程中,Gamma Proteobacteria亚纲与Desulfobacter postgatei种的微生物显著增加,这种动态变化表明这些细菌可能是在厌氧条件下对喹啉的降解起关键作用的微生物.  相似文献   

7.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

8.
The research investigated the nitrification characteristics of two different immobilization methods: nitrifier encapsulation in polyethylene glycol (PEG) gel pellets and nitrifier biofilm attachment on elastic plastic filler. The two carriers were placed in identical reactors. They reached a maximum nitrification rate of 39 and 25 mgN/L·h 30 days after start-up. The results showed that the nitrification efficiency in the PEG reactor was higher than in the biofilm reactor under the same conditions. Variations in temperature decreased the nitrification rate by approximately 55% in the PEG reactor from 28 to 8°C, while 74.2% in the biofilm reactor. When the COD loading rate was increased to 0.8 kg/m3 day, the nitrification efficiency in the biofilm reactor dropped sharply to 23%, and that of PEG reactor remained over 80%. PEG pellets with a high nitrification rate under all conditions showed promise as an immobilization medium, and are likely to be utilized in the nitrification of high-strength ammonia and COD wastewater during long-term operation.  相似文献   

9.
An expanded granular sludge bed reactor, inoculated with acclimated sulfidogenic granular sludge, was operated at 33 °C and fed with acetic acid as COD source and sulfate as electron acceptor. The bioreactor had a sulfate conversion efficiency of 80–90% at a high sulfate loading rate of 10.4 g SO4 2--S/l.d after only 60 days of start-up. This was achieved by implementing a dual operational strategy. Firstly acetic acid was dosed near stoichiometry (COD over sulfur ratio = 2.0 to 2.2) which allowed almost complete sulfate removal. Secondly the pH in the bioreactor was kept slightly alkaline (7.9 ± 0.1) which limited the concentration of the inhibitory undissociated hydrogen sulfide H2S (pKa = 7). This allowed the acetotrophic sulfate reducing bacteria to predominate throughout the long term experiment. The limitations of the EGSB technology with respect to the sulfate conversion rate appeared to be related to the biomass wash-out and granule deterioration occurring at superficial upflow velocities above 10 m/h. Increasing the recirculation flow caused a drop in the sulfate reduction rate and efficiency, an increase of the suspended sludge fraction and a considerable loss of biomass into the effluent, yielding bare mainly inorganic granules. Elemental analysis revealed that a considerable amount of the granular sludge dry matter at the end of the experiment, at an upflow velocity of 20 m/h, consisted of calcium (32%), mainly in the form of carbonate deposits, while organic matter only represented 7%.  相似文献   

10.
Most Trichloroethylene (TCE) biodegradation reports refer to methanogenic conditions, however, in this work, enhanced sulfidogenesis and TCE biodegradation were achieved in an upflow anaerobic sludge blanket (UASB) reactor in which a completely sulfidogenic sludge, from hydrothermal vents sediments, was developed. The work was divided in three stages, (i) sludge development and sulfate reducing activity (SRA) evaluation, (ii) TCE biodegradation and (iii) SRA evaluation after TCE biodegradation. For (i) SR was 98 ± 0.1%, 84% as sulfide (H2S, 1200 ± 28 mg/L), sulfate reducing activity (SRA) was 188 ± 50 mg COD H2S/g VSS*d. For (ii) The reactor reached 74% of TCE removal, concentrations of vinyl chloride of 16 ± 0.3 μM (5% of the TCE added) and ethene 202 ± 81 μM (67% of the TCE added), SRA of 161 ± 7 mg COD H2S/g VSS*d, 68% of sulfide (H2S) production and 93% of COD removal. For (iii) SRA was of 248 ± 22 mg COD H2S/g VSS*d demonstrating no adverse effects due to TCE.Among the genera of the microorganisms identified in the sludge during TCE biodegradation were: Dehalobacter, Desulfotomaculum, Sulfospirillum, Desulfitobacterium, Desulfovibrio and Clostridium. To the best of our knowledge, this is the first report using a sulfidogenic UASB reactor to biodegrade TCE. The overall conclusions of this work are that the reactor is efficient on both, sulfate and TCE biodegradation and it could be used to decontaminate wastewater containing organic solvents and relatively high concentrations of sulfate.  相似文献   

11.

Multi-walled carbon nanotubes (MWCNTs) released into the sewage may cause negative and/or positive effects on the treatment system. The objective of this study was to explore over 110 days’ effect of MWCNTs on the performance of anaerobic granular sludge and microbial community structures in an upflow anaerobic sludge blanket (UASB) reactor. The results showed that MWCNTs had no significant effect on the removal of chemical oxidation demand (COD) and ammonia in UASB reactor, but the total phosphorus (TP) removal efficiency increased by 29.34%. The biogas production of the reactor did not change. The anaerobic granular sludge tended to excrete more EPS to resist the effects of MWCNTs during the long-term impact. Illumina MiSeq sequencing of 16S rRNA gene revealed that MWCNTs did not affect the microbial diversity, but altered the composition and structure of microbial community in the reactor. In this process, Saccharibacteria replaced Proteobacteria as the highest abundant bacterial phylum. MWCNTs promoted the differentiation of methanogen structure, resulting in increase of Methanomassiliicoccus, Methanoculleus, and the uncultured WCHA1–57. These results indicated that MWCNTs impacted the performance of UASB reactor and the structures of the microbial community in anaerobic granular sludge.

  相似文献   

12.
Complete granulation of nitrifying sludge was achieved in a sequencing batch reactor. For the granular sludge, batch experiments were conducted to characterize the kinetic features of ammonia oxidizers (AOB) and nitrite oxidizers (NOB) in the granules using the respirometric method. A two-step nitrification model was established to determine the kinetic parameters of both AOB and NOB. In addition to nitrification reactions, the new model also took into account biomass maintenance and mass transfer through the granules. The yield coefficient, maximum specific growth rate, and affinity constant for ammonium for AOB were 0.21 g chemical oxygen demand (COD) g−1 N, 0.09 h−1, and 9.1 mg N L−1, respectively, whereas the corresponding values for NOB were 0.05 g COD g−1 N, 0.11 h−1, and 4.85 mg N L−1, respectively. The model developed in this study performed well in simulating the oxygen uptake rate and nitrogen conversion kinetics and in predicting the oxygen consumption of the AOB and NOB in aerobic granules.  相似文献   

13.
The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0 mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m−3 d−1. The biomass concentration was 7600 mg L−1 while the sludge volume index (SVI) was 31.3 mL g SS−1 indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.  相似文献   

14.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

15.
Aerobic granular sludge was cultivated from activated sludge with two types of supports, namely bivalve shell carrier (BSC) and anaerobic granules (ANG). Granules were characterized at different organic loading rates (OLRs) ranging from 2.5 to 15 kg COD/m3 d and these granules were observed to withstand high OLRs. The physico-chemical characteristics of the aerobic granules were better than those of seed sludge. The granule formation with ANG support was found to be similar to that of non-support cultivation, i.e. formation from activated sludge only. By contrast, BSC support showed better performance in terms of faster settleability, compactness and especially resistance against organic shock loading. It also enabled self-cleaning effect by removing biofilm attached on the reactor wall during the start-up phase resulting rapid granulation process.  相似文献   

16.
The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H3PO4 was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m3 CH4/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21–0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.  相似文献   

17.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and $ {\text{NH}}_4^{ + }{\text{ - N}} $ after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.  相似文献   

18.
A two-stage lab-scale UASB reactor, incorporating a selector-type UASB prior to the main reactor was operated at 37 °C with an easily biodegradable food wastewater having a COD of 3,000 mg/L. Varying the hydraulic retention time from 25 to 5 h, the removal of COD by the two-stage process was higher than 95%. Effluent soluble COD was consistently below 75 mg/L and the methane production rate close to theoretical values. The selector UASB removed the majority of the organic load (70–90%) at high organic loading rate, i.e. between 6 and 30 g/(Ld) and the granular sludge developed was characterized by dense microbial colonies, high volatile suspended solids’ content and high substrate degradation efficiency. Design of a two-stage process, incorporating a selector and a second UASB reactor, was able to achieve stable and complete substrate degradation at overall loading rates of the order of ~10–15 g/(Ld).  相似文献   

19.
The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (θX) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for θX = 10 days and 15 mg COD/L for θX = 2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for θX = 2 days and 4.1/day for θX = 10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.  相似文献   

20.
A laboratory-scale sequencing batch reactor was started-up with flocculated biomass and operated primarily for enhanced biological phosphate removal. Ten weeks after the start-up, gradual formation of granular sludge was observed. The compact biomass structure allowed halving the settling time, the initial reactor volume, and doubling the influent COD concentration. Continued operation confirmed the possibility of maintaining a stable granular biomass with a sludge volume index less than 40 ml g–1, while securing a removal efficiency of 95% for carbon, 99.6% for phosphate, and 71% for nitrogen. Microscopic observations revealed a morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号