首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To investigate the minimal lethal freezing temperature required to produce skin necrosis in dogs, multiple skin sites were frozen with cryosurgical equipment. Tissue temperatures were recorded from thermocouple sites placed at diverse distances, usually 5 mm from the edge of the freezing probe. In single freezing cycles of about 3 min duration, tissue temperatures in the range of 0 to ?60 °C were produced. Punch biopsies of the skin at the thermocouple sites 3 days after freezing injury provided tissues for estimation of viability by histologic examination.The histologic findings permitted classification of the biopsy tissue into three groups, that is, viable, borderline, or necrotic. When classified as borderline, the division between the necrotic and viable tissue was evident on the histologic slide. The viable specimens were scattered through the 0 to ?35 °C range. All specimens frozen to ?10 °C or warmer were viable. In biopsies classified as borderline, the range of viability extended from ?11 ° to ?50 °C. The necrotic biopsies covered a range of ?14 ° to ?50 °C. Cell death was certain at temperatures colder than ?50 °C. The data showed cryosurgical freezing conditions produced a range of temperatures in which viability or death of tissue may occur and that the ranges of viability and necrosis overlapped to a great extent.The wide range of temperatures at which cells were viable shows the need to achieve tissue temperatures in the range of ?50 °C in the cryosurgical treatment of cancer.  相似文献   

2.
A A Gage 《Cryobiology》1979,16(1):56-62
Experiments were performed correlating tissue temperature and tissue impedance in the course of freezing canine skin and palate. Tissue impedance rose gradually to high levels as the tissue froze. Tissue temperature of ?26 ° to ?30 °C corresponded closely to tissue impedance of 1 MΩ. Tissue impedance of 5 to 10 MΩ corresponded closely to temperatures of ?40 °C and colder. These observations indicated that the measurement of tissue impedance was related to tissue temperature and suggested that either or both could be used to predict tissue destruction in cryosurgery.  相似文献   

3.
Effect of varying freezing and thawing rates in experimental cryosurgery   总被引:5,自引:0,他引:5  
Six different freezing/thawing programs, which varied freezing rate, duration of freezing, and thawing rates, were used to investigate the effect of these factors on cell destruction in dog skin. The range of tissue temperatures produced was from -15 to -50 degrees C. The extent of destruction was evaluated by skin biopsies 3 days after cold injury. In single, short freezing/thawing cycles, the temperature reached in the tissue was the prime factor in cell death. Longer freezing time and slow thawing were also important lethal factors which increased destruction of cells. Cooling rate, whether slow or fast, made little difference in the outcome. The experiments suggested that present-day, commonly employed cryosurgical techniques, which feature fast cooling, slow thawing, and repetition of the freeze/thaw cycle, should be modified by the use of maintenance of the tissue in the frozen state for several minutes and slow thawing. Thawing should be complete before freezing is repeated. These modifications in technique will maximize tissue destruction, an important consideration in cancer cryosurgery.  相似文献   

4.
Andrew A. Gage 《Cryobiology》1978,15(4):415-425
In experiments using cryosurgical apparatus to freeze the canine palate in situ, observations were made on techniques of producing tissue destruction. Several time-temperature schedules of freezing were studied. The results showed the great tolerance of palatal tissues to extremely low temperatures for short time periods. Melanocytes were extraordinarily sensitive to cold injury. Tissue necrosis increased with duration of freezing, but repeated freezing was lethal and obviously critical for successful cryosurgical destruction. Thermocouples must be used in clinical cryosurgery to insure that lethal tissue temperatures (colder than ?50 °C) are attained. The incidence of sequestration in the canine palate showed the need for use of proper technique and suitable precautions in the cryosurgical treatment of human palatal tumors.  相似文献   

5.
Experiments were performed correlating tissue temperature and current flow during freezing canine skin. Current flow fell gradually to negligible levels as the tissue froze. Tissue temperature of ?31 °C correlated with current flow of 5 μA. Tissue temperature of ?55 °C correlated with zero current flow. The observations indicated that current flow was related to tissue temperature and that either or both could be used to predict tissue destruction in cryosurgery. However, tissue temperature measurement is the more accurate method of quantification.  相似文献   

6.
By haematoxylin and eosin staining, morphological picture of skin subjected to cryoapplication was assessed. Tissue destruction resulted in necrosis and inflammatory infiltration of small cells. Degree of cryodestruction depended on the time of freezing of the tissue examined patterns. Cryonecrosis focus was found to be equal to the surface of the applicator used.  相似文献   

7.
A technique is presented for a simple, rapid, and reliable means of determining the viability of plant tissue subjected to freezing temperatures. Freezing curves of excised stems of Cornus stolonifera Michx., and several other genera were studied. Tissue temperature was recorded during freezing of plant stem sections. The heat of crystallization deflected the resultant freezing curves at points where tissue froze. Living stem sections of all genera studied revealed 2 freezing points, while dead tissue exhibited only 1. The influence of variables such as moisture content, sample size, thermocouple placement, and cooling rate on freezing curves was analyzed. Stem samples wrapped in moisture-proof film with a thermocouple inserted into the pith were frozen to a predetermined test temperature, thawed, and subjected to a second freezing cycle. The presence or absence of 2 freezing points in the second freezing cycle was used as a criterion for establishing viability. The results were immediately available and identical to results from regrowth tests which took about 20 days.  相似文献   

8.
Cyclo-oxygenase inhibitors and free-radical scavengers protect the skin against necrosis induced by frostbite. However, the tissue component(s) that determine the evolution of skin necrosis and the mechanism of this pharmacologic protection are not precisely defined. We have studied freezing injury to rabbit ears by serial biopsies examined by light and electron microscopy. The morphologic evidence of skin injury due to freezing was localized exclusively in the endothelial cells, particularly in the arterioles. Within 1 hour, the entire microvasculature demonstrated endothelial damage. Intravascular platelet aggregation occurred just after thawing and closely paralleled the endothelial cell injury. Very few neutrophils were seen initially (at 10 minutes). By 1 hour, leukocyte aggregates were present, and they further increased at 6 hours. Swelling of the interstitium started 10 minutes after thawing, while extravasation of erythrocytes began to appear by 6 hours. Parenchymal elements of skin were relatively free of damage. In the ear cartilage, the chondrocytes showed evidence of damage immediately after freezing. The administration of superoxide dismutase (SOD) during thawing (reperfusion) did not qualitatively alter any of the initial morphologic changes induced by freezing. We conclude that the endothelial cell is the initial target of injury induced by freezing, an initial injury that is mediated by a non-free-radical-mediated mechanism. It is likely that this acute injury ultimately compromises blood flow and leads to skin necrosis.  相似文献   

9.
Frostbite occurs when the skin is exposed to localized low temperatures. The main causes of frostbite are thought to be direct cell injury due to freezing of cells and tissue ischemia due to abnormal blood circulation. However, the molecular mechanism of frostbite has not been elucidated. This study aims to explain the molecular dynamics of frostbite using a mouse frostbite model and keratinocyte cell culture. Comprehensive gene expression analysis performed on mouse skin samples revealed that β-catenin signaling is activated by frostbite. Immunohistochemistry showed nuclear translocation of β-catenin in the skin of frostbite model mice that was not observed in mice subjected to a mechanical skin damage model induced by tape stripping. Tissue hypoxia, as detected by pimonidazole staining, coexisted with nuclear expression of β-catenin. In keratinocyte cell cultures, nuclear translocation of β-catenin was induced by hypoxia, but not by low temperature. Hypoxia induced epithelial-mesenchymal transition - an important biological event in the healing process of skin - and in vitro wound-healing activity, both of which were suppressed by β-catenin inhibition. Our results suggest that during frostbite, impaired blood flow causes hypoxia, which in turn activates β-catenin that promotes keratinocyte motility and tissue repair.  相似文献   

10.
Tissue damage that is associated with the loss of cell membrane integrity should alter the bulk electrical properties of the tissue. This study shows that electrical impedance tomography (EIT) should be able to detect and image necrotic tissue inside the body due to the permeabilization of the membrane to ions. Cryosurgery, a minimally invasive surgical procedure that uses freezing to destroy undesirable tissue, was used to investigate the hypothesis. Experimental results with liver tissue demonstrate that cell damage during freezing results in substantial changes in tissue electrical properties. Two-dimensional EIT simulations of liver cryosurgery, which employ the experimental data, demonstrate the feasibility of this application.  相似文献   

11.
Cryotherapy is a minimally invasive treatment for prostate cancer. Complete ablation of cancer tissue some times fails and results in disease recurrence. In this study we investigate the effect of TRAIL as a sensitising agent to enhance the effects of cryotherapy on prostate cancer cells. Prostate cancer cells were cooled using Endocare cryo-system to mimic temperatures achieved during clinical cryotherapy. The effects of TRAIL, cryotherapy or combination of both treatment on DU-145 and PC-3 were evaluated. Viability and mode of cell death was assessed following treatment. Cryotherapy did not result in complete cell death at temperature −40 °C. Cells died by both necrosis and apoptosis. Cells which survived freeze–thaw cycle became more sensitive to a second freezing injury. TRAIL resulted in minimal cell death. Concomitant treatment of the tumour cells with TRAIL and cryotherapy resulted in complete loss of viability at −10 and −20 °C. Cell death was mainly due to marked increase in necrosis.Our finding demonstrates that combined treatment of TRAIL and cryotherapy represent a novel approach to increase the sensitivity to cryotherapy. This combined approach may be feasible for locally advanced prostate cancer.  相似文献   

12.
In standardized freezing experiments made on depilated rat skin, it was found that vasconstriction gives some cryoprotection, but, only if tissue temperatures do not drop below ?30 °C.It is suggested that vasoconstriction, which is a well-known sequel to more moderate drops in tissue temperature, is in fact a physiological temperature defense mechanism. This mechanism is probaly only of minor importance in connection with cryosurgical procedures. It would, however, be worthwhile to look into the cryoprotective effect of vasoconstriction from a purely physiological point of view, but this has been beyond the scope of the present study.In the course of the experiments it was found that when edema persists in frozen skin beyond 24 to 48 hr after the cryoinsult, then the edema can be taken as a sign of viability of the tissue.  相似文献   

13.
The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.  相似文献   

14.
《Cryobiology》2010,60(3):229-243
Cryosurgery is the use of freezing temperatures to elicit an ablative response in a targeted tissue. This review provides a global overview of experimentation in vivo which has been the basis of advancement of this widely applied therapeutic option. The cellular and tissue-related events that underlie the mechanisms of destruction, including direct cell injury (cryolysis), vascular stasis, apoptosis and necrosis, are described and are related to the optimal methods of technique of freezing to achieve efficacious therapy. In vivo experiments with major organs, including wound healing, the putative immunological response following thawing, and the use of cryoadjunctive strategies to enhance cancer cell sensitivity to freezing, are described.  相似文献   

15.
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, −5 °C and −10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure.  相似文献   

16.
Frostbite Protection in Mice Expressing an Antifreeze Glycoprotein   总被引:1,自引:0,他引:1  
Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natural tick host and in a transgenic Drosophila model. Here we show, in a transgenic mouse model expressing an anti-freeze glycoprotein, that IAFGP protects mammalian cells and mice from cold shock and frostbite respectively. Transgenic skin samples showed reduced cell death upon cold storage ex vivo and transgenic mice demonstrated increased resistance to frostbite injury in vivo. IAFGP actively protects mammalian tissue from freezing, suggesting its application for the prevention of frostbite, and other diseases associated with cold exposure.  相似文献   

17.

Background

Buruli ulcer (BU) caused by Mycobacterium ulcerans is a necrotizing skin disease usually starting with a subcutaneous nodule or plaque, which may ulcerate and progress, if untreated, over months and years. During the currently recommended antibiotic treatment with rifampicin/streptomycin plaque lesions tend to ulcerate, often associated with retarded wound healing and prolonged hospital stays.

Methodology/Principal Findings

Included in this study were twelve laboratory reconfirmed, HIV negative BU patients presenting with plaque lesions at the CDTUB in Allada, Benin. Punch biopsies for histopathological and immunohistochemical analysis were taken before start of treatment and after four to five weeks of treatment. Where excision or wound debridement was clinically indicated, the removed tissue was also analyzed. Based on clinical judgment, nine of the twelve patients enrolled in this study received limited surgical excision seven to 39 days after completion of chemotherapy, followed by skin grafting. Lesions of three patients healed without further intervention. Before treatment, plaque lesions were characterized by a destroyed subcutis with extensive necrosis without major signs of infiltration. After completion of antibiotic treatment partial infiltration of the affected tissue was observed, but large necrotic areas remained unchanged.

Conclusion/Significance

Our histopathological analyses show that ulceration of plaque lesions during antibiotic treatment do not represent a failure to respond to antimycobacterial treatment. Based on our results we suggest formal testing in a controlled clinical trial setting whether limited surgical excision of necrotic tissue favours wound healing and can reduce the duration of hospital stays.  相似文献   

18.
Cryosurgery is the use of freezing temperatures to elicit an ablative response in a targeted tissue. This review provides a global overview of experimentation in vivo which has been the basis of advancement of this widely applied therapeutic option. The cellular and tissue-related events that underlie the mechanisms of destruction, including direct cell injury (cryolysis), vascular stasis, apoptosis and necrosis, are described and are related to the optimal methods of technique of freezing to achieve efficacious therapy. In vivo experiments with major organs, including wound healing, the putative immunological response following thawing, and the use of cryoadjunctive strategies to enhance cancer cell sensitivity to freezing, are described.  相似文献   

19.
An analytical study of cryosurgery in the lung.   总被引:1,自引:0,他引:1  
The process of freezing in healthy lung tissue and in tumors in the lung during cryosurgery was modeled using one-dimensional close form techniques and finite difference techniques to determine the temperature profiles and the propagation of the freezing interface in the tissue. A thermal phenomenon was observed during freezing of lung tumors embedded in healthy tissue, (a) the freezing interface suddenly accelerates at the transition between the tumor and the healthy lung, (b) the frozen tumor temperature drops to low values once the freezing interface moves into the healthy lung, and (c) the outer boundary temperature has a point of sharp inflection corresponding to the time at which the tumor is completely frozen.  相似文献   

20.
Although cryosurgery is attaining increasing clinical acceptance, our understanding of the mechanisms of cryogenic cell destruction remains incomplete. While it is generally accepted that cryoinjured cells die by necrosis, the involvement of apoptosis was recently shown. Our studies of liver cell death by cryogenic temperature revealed the activation of endonuclease p23 and its de novo association with the nuclear matrix. This finding is strongly suggestive of a programmed-type of cell death process. The presumed order underlying cryonecrotic cell death is addressed here by examining the mechanism of p23 activation. To that end, nuclear proteins that were prepared from fresh liver, which is devoid of p23 activity, were incubated with protein fractions isolated from liver exposed to freezing/thawing that possessed a presumed p23 activation factor. We observed that the activation of p23 was the result of a proteolytic event in which cathepsin D played a major role. Different patterns of proteolytic cleavage of nuclear proteins after in vitro incubation of nuclei and in samples isolated from frozen/thawed liver were observed. Although both processes induced p23 activation, the incubation experiments generated proteolytic hallmarks of apoptosis, while freezing/thawing of whole liver resulted in typical necrotic PARP-1 cleavage products and intact lamin B. As an explanation we offer a hypothesis that after freezing, cells possess the potential to die through necrotic as well as apoptotic mechanisms, based on our finding that the cytosol of cells exposed to cryogenic temperatures contains both necrotic and apoptotic executors of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号