首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study in vivo the enhanced granulopoiesis that occurs during acute inflammation, 1-3 sterile metallic copper rods were inserted subcutaneously into mice either at the same place (one abscess) or at different sites (multiple abscesses). Diffusion chambers filled with bone marrow cells were implanted intraperitoneally for 3 days. When a single abscess was created, the granulocytic content of the diffusion chamber increased similarly whatever the number of inserted copper rods. However, there was a direct relationship between the number of abscesses and the number of granulocytic cells harvested from the diffusion chambers. In order to investigate the role of T-lymphocytes in the production of diffusible stimulating factors that act on diffusion chamber granulopoiesis, cyclosporin A (CyA) was given to the mice with implanted copper rods. CyA abrogated the induced enhancement of CFU-S, CFU-GM and mature granulocyte numbers inside the diffusion chamber. The stimulatory effect of inflammation on diffusion chamber granulopoiesis was not observed in T-lymphocyte-deficient nude mice. These data suggest that in vivo stimulation of granulopoiesis is related to the level of inflammation, and that this effect requires the functional integrity of T-lymphocytes.  相似文献   

2.
Lithium is a recognized, potent stimulator of granulopoiesis. The present study used the model of clonal growth of granulopoietic precursors in diffusion chambers to investigate the relevance of certain colony-stimulating factors to lithium stimulation in vivo. In this system, lithium stimulation of granulopoiesis could not be attributed to changes in serum or chamber fluid colony-stimulating factor levels. Antibody to colony-stimulating factor-1 administered during culture markedly reduced morphologic expression of colonies in control and lithium-pretreated host mice, yet subculture of chamber contents revealed that lithium stimulation of a granulopoietic progenitor, perhaps of primitive potentiality, had nevertheless occurred. Therefore, we hypothesize that lithium acts in an indirect, hormonal fashion and that these colony-stimulating factors, while necessary for morphologic expression, play no role in the stimulatory effect. This hypothesis raises the possibility that lithium in combination with recombinant colony-stimulating factors may result in clinically effective synergistic stimulation of granulopoiesis.  相似文献   

3.
We studied the effect of lithium on diffusion chamber (DC) granulopoiesis. When DC loaded with bone marrow cells were implanted into the peritoneal cavity of mice previously injected with lithium carbonate, more proliferative and nonproliferative granulocytes were produced as compared to DC implanted into control hosts. The number of DC CFU-c was increased significantly in the lithium-treated group, but there was no difference in the number of DC CFU-s. Levels of DC fluid CSF showed no evident correlation with DC myelopoiesis. These data suggest that a humoral factor other than CSF mediates the action of lithium in DC granulopoiesis, and that lithium's influence on DC hematopoietic stem cell proliferation occurs mainly at the CFU-c level.  相似文献   

4.
5.
Regulation of haematopoiesis was investigated by studying the response of haematopoietic tissues of mice to a perturbation of the steady state by vinblastine (VLB). Progenitor cells were quantified ly limiting dilution analysis of diffusion chamber cultures of haematopoietic cells and by the spleen colony technique. The diffusion chamber technique appears to assay granulocyte progenitor cells and those multipotent progenitor cells that become committed to granulopoiesis during chamber culture. The spleen colony technique probably assays multipotent progenitor cells. Decaying oscillatory responses to VLB were observed for progenitor cells as well as for differentiating cells in bone marrow. The period lengths of the diffusion chamber progenitor cell oscillations might indicate that these were induced by humoral feedback signal(s) from nonproliferative granulocytes. The oscillations of the multipotent progenitor cells of bone marrow were less pronounced and were earlier damped than those of the granulocyte progenitor cells. This may support the hypotesis that multipotent progenitor cells are regulated by more efficient mechanisms, which may depend on short range cell-cell interactions rather than long range humoral regulators.  相似文献   

6.
Within the granulopoietic recovery phase the proportion of neutrophils and their precursors in the spleen was elevated from 1.7 +/- 0.3% (controls) to 14.7 +/- 2.2% (on day 14 after cyclophosphamide). Splenic granulopoiesis persisted for a time after the appearance of marrow recovery. These data suggest that the rat adult spleen can become a markedly granulopoietic organ during the regeneration of granulopoiesis which follows experimentally induced myelosuppression.  相似文献   

7.
Murine marrow cells were cultured in Millipore diffusion chambers implanted into the peritoneal cavity of variously conditioned murine hosts. Preirradiation (350 cGy), bleeding (0.5 ml) and phenylhydrazine injection (75 mg/kg i.v.) when performed together on the chamber host, induced better growth of erythropoietic and granulopoietic colonies inside the PCDCs than either of these manoeuvres alone. Small erythrocytic colonies (CFU-E derived) and small granulocytic colonies were observed at day 3 of marrow culture. Erythropoietic bursts and large granulocytic colonies were observed at day 8 of chamber culture. Colonies of macrophage-like cells, fibroblast-like cells, mixed erythro-granulopoietic colonies and megakaryoblasts were observed less regularly in chambers incubated in these conditions. The study provides a standardized, relatively reproducible PCDC culture system for studies of both erythro- and granulopoiesis, and does not require a hypoxic chamber.  相似文献   

8.
Murine marrow cells were cultured in Millipore diffusion chambers implanted into the peritoneal cavity of variously conditioned murine hosts. Preirradiation (350 cGy), bleeding (0.5 ml) and phenylhydrazine injection (75 mg/kg i.v.) when performed together on the chamber host, induced better growth of erythropoietic and granulopoietic colonies inside the PCDCs than either of these manoeuvres alone. Small erythrocytic colonies (CFU-E derived) and small granulocytic colonies were observed at day 3 of marrow culture. Erythropoietic bursts and large granulocytic colonies were observed at day 8 of chamber culture. Colonies of macrophage-like cells, fibroblast-like cells, mixed erythro-granulopoietic colonies and megakaryoblasts were observed less regularly in chambers incubated in these conditions. the study provides a standardized, relatively reproducible PCDC culture system for studies of both erythro- and granulopoiesis, and does not require a hypoxic chamber.  相似文献   

9.
These studies were to evaluate the effects of humoral factors on amplification of nonrecognizable erythrocytic and granulocytic precursors by the in vivo plasma clot diffusion chamber and the in vitro plasma clot culture methods. Changes in the plasma erythropoietin levels in the reticulocyte concentration and hematocrits of irradiated and nonirradiated Long-Evans rats exposed to hypoxia were also determined. While erythropoietin plasma concentrations appeared to affect BFU-E and CFU-E growth, results suggest erythropoietin may not be the sole regulator of red cell production and that inhibitors of chalone-like mechanisms may be involved. Measurements made on granulocyte precursors treated with colony stimulating factor (CSF) containing L-cell-conditioned medium revealed granulocytic colonies and burst-like formations similar to those seen for erythrocytic growth. There is strong evidence suggesting that CSF is a regulator of granulopoiesis; however, it is not the sole regulator and it appears that inhibitors may play an in vivo role. Growth of colonies with cell numbers not a power of 2 implies either asymmetric mitosis due to loss of genetic information required for continuing division, or differences in concentrations of, or ability to recognize, inhibitory factors. These possibilities are examined in the light of results from in vivo and in vitro culture techniques.  相似文献   

10.
Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4+ naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected. These B cells are poised to differentiate to plasma cells in response to blood borne pathogens, in an analogous fashion to non-recirculating marginal zone (MZ) B cells in the spleen. MZ B cells nevertheless differentiate more efficiently to plasma cells upon polyclonal stimulation by Toll-like receptor (TLR) ligands, and are depleted during chronic T cell mediated inflammation in vivo. The preservation of mature B cells in the BM is associated with increased concentration of macrophage migration inhibitory factor (MIF) in serum and BM plasma. MIF produced by perivascular dendritic cells (DC) in the BM provides a crucial survival signal for recirculating B cells, and mice treated with a MIF inhibitor during inflammation showed significantly reduced mature B cells in the BM. These data indicate that MIF secretion by perivascular DC may promote the survival of the recirculating B cell pool to ensure responsiveness to blood borne microbes despite loss of the MZ B cell pool that accompanies depressed lymphopoiesis during inflammation.  相似文献   

11.
Mouse bone marrow cells have been cultured in diffusion chambers and their capacity to form spleen colonies in irradiated mice investigated after different culture periods. The number of spleen colony-forming units (CFU) in the chambers decreased during the first day of culture. The number then increased rapidly to a level significantly above the original chamber value on the third to fifth day of culture. By that time large numbers of granulocytes and macrophages had also appeared. Histological examination of spleen colonies showed that prior culturing did not alter the ratio between the different types of colonies. Cultured bone marrow cells which were transferred to new chambers retained granulopoietic capacity. This capacity increased between the first and second day of primary culturing. At this time hydroxyurea injections to chamber hosts revealed that the progenitor cells were proliferating. The results show that the granulopoietic progenitor cells of the chambers are stem cells, and that one progenitor cell type is identical with the CFU.  相似文献   

12.
The production of humoral factors that stimulate spleen colony-forming units (CFU-S) has been studied in irradiated mice using an in vivo diffusion chamber assay. The experiments show that a significant release of factors that stimulate CFU-S takes place in the first few days after irradiation with moderate doses of 1.5 or 5 Gy. In contrast, the release of significant amounts of these humoral factors was not seen in animals irradiated with either low (0.75 Gy) or high (10 Gy) doses of X rays. The correlation observed between the production of factors that stimulate the CFU-S and the hemopoietic regeneration kinetics of the irradiated mice suggests that these factors represent part of the physiological regulators controlling the proliferation of CFU-S.  相似文献   

13.
Enhanced granulopoietic activity is crucial for host defense against bacterial pneumonia. Alcohol impairs this response. The underlying mechanisms remain obscure. G-CSF produced by infected lung tissue plays a key role in stimulating bone marrow granulopoiesis. This study investigated the effects of alcohol on G-CSF signaling in the regulation of marrow myeloid progenitor cell proliferation in mice with Streptococcus pneumoniae pneumonia. Chronic alcohol consumption plus acute alcohol intoxication suppressed the increase in blood granulocyte counts following intrapulmonary challenge with S. pneumoniae. This suppression was associated with a significant decrease in bone marrow granulopoietic progenitor cell proliferation. Alcohol treatment significantly enhanced STAT3 phosphorylation in bone marrow cells of animals challenged with S. pneumoniae. In vitro experiments showed that G-CSF-induced activation of STAT3-p27(Kip1) pathway in murine myeloid progenitor cell line 32D-G-CSFR cells was markedly enhanced by alcohol exposure. Alcohol dose dependently inhibited G-CSF-stimulated 32D-G-CSFR cell proliferation. This impairment of myeloid progenitor cell proliferation was not attenuated by inhibition of alcohol metabolism through either the alcohol dehydrogenase pathway or the cytochrome P450 system. These data suggest that alcohol enhances G-CSF-associated STAT3-p27(Kip1) signaling, which impairs granulopoietic progenitor cell proliferation by inducing cell cycling arrest and facilitating their terminal differentiation during the granulopoietic response to pulmonary infection.  相似文献   

14.
It is well established that activating-type Fc receptors for IgG (FcgammaR), such as FcgammaRI and FcgammaRIII, are essential for inducing inflammatory responses, whereas a unique inhibitory FcgammaR, FcgammaRIIB, inhibits intracellular signaling upon ligation of IgG-immune complexes, and can suppress inflammation and autoimmunity. Although antigen presentation is a crucial step for evoking inflammatory responses, the contribution of FcgammaRIIB to antigen presentation is controversial as to whether it regulates antigen-presenting cells (APC), particularly dendritic cells (DC), positively or negatively. In the present report, we show that the antigen targeting to both activating-type FcgammaRs, FcgammaRI/III, and inhibitory FcgammaRIIB on bone marrow-derived DC and macrophages and primary epidermal Langerhans' cells augmented T cell proliferation in vitro and elicited humoral responses upon adoptive transfer of the antigen-pulsed DC. The DC lacking FcgammaRIIB showed a reduction in IC-uptake ability and a decreased T-cell stimulation, and induced less efficient IgG production than those of DC from wild-type mice. On the other hand, the DC lacking FcR common gamma subunit, which only expresses FcgammaRIIB, showed significant up-regulations of IC-uptake, T-cell proliferation, and IgG production compared to those of FcgammaR null DC, demonstrating a positive regulation of FcgammaRIIB for the efficient antigen presentation of IgG-complexed antigens. These results support the therapeutic benefits of antigen-targeting to FcgammaR on APC in the various inflammatory disorders.  相似文献   

15.
Transfer of CD45RB(high) CD4+ T cells to immune-deficient mice in the absence of regulatory T cells leads to a Th1-mediated colitis. In this study, we show that intestinal inflammation is characterized by a 15-fold increase in the number of CD134L+ (OX40L+)-activated DC in the mesenteric lymph nodes (MLNs) compared with BALB/c mice. This was important functionally, as administration of an anti-CD134L mAb inhibited the proliferation of T cells in the MLNs as well as their expression of the gut-homing integrin alpha(4)beta(7). Most importantly, the anti-CD134L mAb completely blocked development of colitis. Surprisingly, CD134L was found to be expressed by a proportion of dendritic cells (DC) in the MLNs of unreconstituted SCID mice, suggesting that CD134L can be induced on DC in the absence of T cell-derived signals. These results indicate that some DC in the MLNs of SCID mice express an activated phenotype and that CD134L expression by these cells is involved in the development of colitis induced by T cell transfer. Accumulation of CD134L+ DC was inhibited by cotransfer of regulatory T cells, suggesting that inhibition of the accumulation of activated DC is one mechanism by which these cells prevent immune pathology.  相似文献   

16.
E Kurrle  D Hoelzer  H Schmücker 《Blut》1979,38(5):383-389
Growth of mononuclear cells from human peripheral blood from 10 normal individuals was tested in diffusion chamber culture over a period up to 17 or 21 days. After an initial decrease during the first few days an increase of the total cell number was observed with maximal values on day 13. In all individuals growth of undifferentiated blast cells, lymphocytes, plasma cells, immature and mature granulopoietic cells, macrophages, and megakaryocytes occurred. In all individuals the different cell types had similar growth patterns in diffusion chamber culture. The considerable numerical variations which were seen in the granulopoietic cells were probably due to different stem cell concentrations in the peripheral blood of the investigated individuals. The results indicate that the diffusion chamber technique is a valuable method for the detection of haemopoietic stem cells and the culture of lymphocytic cells in man.  相似文献   

17.
Interaction between the nervous and immune systems greatly contributes to inflammatory disease. In organs at the interface between our body and the environment, the sensory neuropeptide substance P (SP) is one key mediator of an acute local stress response through neurogenic inflammation but may also alter cytokine balance and dendritic cell (DC) function. Using a combined murine allergic inflammation/noise stress model with C57BL/6 mice, we show in this paper that SP--released during repeated stress exposure--has the capacity to markedly attenuate inflammation. In particular, repeated stress exposure prior to allergen sensitization increases DC-nerve fiber contacts, enhances DC migration and maturation, alters cytokine balance, and increases levels of IL-2 and T regulatory cell numbers in local lymph nodes and inflamed tissue in a neurokinin 1-SP-receptor (neurokinin-1 receptor)-dependent manner. Concordantly, allergic inflammation is significantly reduced after repeated stress exposure. We conclude that SP/repeated stress prior to immune activation acts protolerogenically and thereby beneficially in inflammation.  相似文献   

18.
19.
20.
Apoptosis is essential for clearance of potentially injurious inflammatory cells and subsequent efficient resolution of inflammation. Here we report that human neutrophils contain functionally active cyclin-dependent kinases (CDKs), and that structurally diverse CDK inhibitors induce caspase-dependent apoptosis and override powerful anti-apoptosis signals from survival factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that the CDK inhibitor R-roscovitine (Seliciclib or CYC202) markedly enhances resolution of established neutrophil-dependent inflammation in carrageenan-elicited acute pleurisy, bleomycin-induced lung injury, and passively induced arthritis in mice. In the pleurisy model, the caspase inhibitor zVAD-fmk prevents R-roscovitine-enhanced resolution of inflammation, indicating that this CDK inhibitor augments inflammatory cell apoptosis. We also provide evidence that R-roscovitine promotes apoptosis by reducing concentrations of the anti-apoptotic protein Mcl-1. Thus, CDK inhibitors enhance the resolution of established inflammation by promoting apoptosis of inflammatory cells, thereby demonstrating a hitherto unrecognized potential for the treatment of inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号