首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prostaglandin E1 (PGE1) treatment of neutrophils inhibits their adherence to substrates in vitro, including endothelial cell monolayers. Demonstration that PGE1 inhibits neutrophil adherence in vivo in the lung, however, is complicated by PGE1 effects on cells other than neutrophils, such as endothelial cells. To determine whether PGE1 inhibits neutrophil adherence properties in vivo, we used air emboli as intravascular targets for neutrophil attachment. Four experimental conditions were studied in anesthetized and awake sheep that were treated with 1) PGE1 and air emboli, 2) saline and air emboli, 3) PGE1 and zymosan-activated plasma (ZAP) + air emboli, and 4) saline and ZAP + air emboli. PGE1 (30 ng.kg-1.min-1) or saline was infused continuously 1 h before and 1 h during the infusion of air emboli (group 1; n = 13 sheep) or ZAP + air emboli (group 2; n = 13 sheep). The number of neutrophils (PMNs) attached to air emboli in four anesthetized sheep per condition was significantly less in sheep given PGE1 and ZAP + air emboli [8 +/- 3 (SD) PMNs/mm of embolus perimeter] than in the other three conditions (14-21 PMNs/mm; P less than 0.05). Repeated experiments in five awake sheep per group showed that PGE1 treatment did not prevent increased lung lymph protein clearance in either group compared with saline treatment. We conclude that PGE1 specifically inhibited attachment of ZAP-activated neutrophils to air emboli in vivo. The lack of pathophysiological protection suggests that PGE1-induced alterations in neutrophil attachment properties were independent of other cellular activation responses.  相似文献   

2.
In postcapillary venules, marginating neutrophils (PMNs) are often seen rolling along the vessel wall prior to stopping and emigrating. There is substantial evidence in vitro and in vivo that the adhesion receptors E- and L-selectin participate in this phenomenon on cytokine-stimulated endothelium, and recent evidence has shown that a closely related adhesion receptor, P-selectin, is capable of mediating neutrophil rolling on an artificial membrane. Here we demonstrate and characterize PMN rolling on monolayers of human umbilical vein endothelial cells (HUVECs) stimulated with histamine to induce surface expression of P-selectin. Peak association of PMNs with the HUVECs occurs 10 min after histamine stimulation, and at a postcapillary venular wall shear stress of 2.0 dyn/cm2 the rolling velocity is 14 microns/s. Approximately 95% of the PMNs roll on the endothelial cells, 5% adhere firmly, and none migrate beneath the endothelial monolayer. Monoclonal antibody (MAb) G1, which binds P-selectin and blocks its adhesive function, completely prevents association of the PMNs with histamine-stimulated HUVEC, whereas the nonblocking anti-P-selectin MAb S12 does not. Treatment of PMNs with the anti-L-selectin MAb DREG56 reduces PMN adherence by approximately 50%. Anti-CD54 MAb R6.5 and anti-CD18 MAb R15.7 have little effect on the number of PMNs rolling on the HUVECs but completely prevent PMNs from stopping and significantly increase rolling velocity. Nonblocking control MAbs for R6.5 (CL203) and R15.7 (CL18/1D1) lack these effects. Rolling adhesion of PMNs on histamine-stimulated HUVECs therefore appears to be completely dependent on endothelial cell P-selectin, with a minor adhesion-stabilizing contribution from intercellular adhesion molecule 1 and beta 2 integrins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Neutrophil-associated lung injury after the infusion of activated plasma   总被引:3,自引:0,他引:3  
Previous studies from our laboratory have shown that the infusion of zymosan-activated plasma (ZAP) caused large numbers of neutrophils (PMN) to accumulate in the lung. Although PMN are known to be activated by ZAP, it is unclear whether PMN delayed in the lung by ZAP infusion actually cause lung injury. The present study was designed to examine this question by measuring airway epithelial and endothelial injury. Airway epithelial injury was determined by depositing a known dose of fluorescein isothiocyanate-labeled dextran in the lung and measuring its appearance in the blood, and endothelial injury was measured by injecting colloidal carbon and measuring its accumulation in the microvasculature of the lung. The data show that ZAP infusion caused a mild epithelial and endothelial injury that did not increase either extravascular water or protein. This injury could be prevented either by depleting the animals of PMN or by pretreating them with indomethacin. In addition, the effect of ZAP infusion could be partially restored by transfusing donor PMN into the PMN-depleted animals. We conclude that ZAP infusion produces a mild lung injury that is dependent on PMN and the products of the cyclooxygenase pathway of arachidonic acid metabolism.  相似文献   

4.

Background

Outcome in sepsis is mainly defined by the degree of organ failure, for which endothelial dysfunction at the macro- and microvascular level is an important determinant. In this study we evaluated endothelial function in patients with severe sepsis using cellular endothelial markers and in vivo assessment of reactive hyperaemia.

Materials and Methods

Patients with severe sepsis (n = 30) and 15 age- and gender- matched healthy volunteers were included in this study. Using flow cytometry, CD34+/KDR+ endothelial progenitor cells (EPC), CD31+ T-cells, and CD31+/CD42b- endothelial microparticles (EMP) were enumerated. Migratory capacity of cultured circulating angiogenic cells (CAC) was assessed in vitro. Endothelial function was determined using peripheral arterial tonometry at the fingertip.

Results

In patients with severe sepsis, a lower number of EPC, CD31+ T-cells and a decreased migratory capacity of CAC coincided with a blunted reactive hyperaemia response compared to healthy subjects. The number of EMP, on the other hand, did not differ. The presence of organ failure at admission (SOFA score) was inversely related with the number of CD31+ T-cells. Furthermore, the number of EPC at admission was decreased in patients with progressive organ failure within the first week.

Conclusion

In patients with severe sepsis, in vivo measured endothelial dysfunction coincides with lower numbers and reduced function of circulating cells implicated in endothelial repair. Our results suggest that cellular markers of endothelial repair might be valuable in the assessment and evolution of organ dysfunction.  相似文献   

5.
6.
Previous studies of the storage of polymorphonuclear leukocytes (PMNs) have used an empirical approach to define "optimal" conditions. To date, no storage conditions have been described which satisfactorily preserve the chemotactic function of PMNs beyond 24 h. In an effort to define the precise nature of the storage lesion, we studied the chemotactic locomotion of freshly isolated PMNs and PMNs which had been suspended in citrate-phosphate-dextrose-adenine (CPD-A1) plasma and stored in PVC bags, at 20-22 degrees C for 24 h. We used time-lapse video recording and computer image analysis to quantitate the motion of PMNs migrating under agarose. The positions of individual motile cells were traced at 1-min intervals for 5 min. The following parameters were used to quantitate migration: speed (distance/min), persistence of locomotion index (velocity/speed), orientation angle (the angle of the vector describing the next displacement of a cell relative to a direct line toward the chemoattractant), and chemotropic index (cosine of the orientation angle). After 24 h of storage, the following changes were observed: fewer cells migrated, the speed of migrating cells was reduced by 25%, the persistence of locomotion index decreased by 7%, which indicates that migrating cells made slightly more/wider turns, and the chemotropic index was decreased by 30%, which indicates that migrating cells were less accurate in their orientation toward the chemoattractant. Apparently, the storage of PMNs selectively impairs the ability of some cells to orient accurately in a chemotactic gradient and changes the distribution of these locomotor parameters within the population.  相似文献   

7.
Increases of cytokine in the blood play important roles in the pathogenesis of influenza‐associated encephalopathy. TNF‐α was administered intravenously to wild‐type mice, after which blood, CSF and brain tissue were obtained, and changes in BBB permeability, the amounts of MMP‐9 and TIMP‐1, and the localization of activated MMP were assessed. There was a significant increase in BBB permeability after 6 and 12 hr. MMP‐9 was increased after 3 hr in the brain and cerebrospinal fluid, which was earlier than in the serum. TIMP‐1 protein in the brain increased significantly after MMP‐9 had increased. Activation of MMP‐9 was observed in neurons in the cerebral cortex and hippocampus, and in vascular endothelial cells. These findings suggest that an increase in blood TNF‐α promotes activation of MMP‐9 in the brain, and may also induce an increase in permeability of the BBB. Early activation of MMP‐9 in the brain may contribute to an early onset of neurological disorders and brain edema prior to multiple organ failure in those inflammatory diseases associated with highly increased concentrations of TNF‐α in the blood, such as sepsis, burns, trauma and influenza‐associated encephalopathy.  相似文献   

8.
The present study investigates the mechanism of zymosan-activated plasma (ZAP)-mediated eicosanoid production by the isolated, perfused rabbit liver and described ZAP-mediated eicosanoid stimulation in cultured hepatocytes. Perfused livers receiving untreated plasma demonstrated no significant changes in portal venous pressure or the rates of release of lactic dehydrogenase or acid phosphatase activity (indicators of cellular injury). The control group livers demonstrated stable rates of release for 6-keto PGF1 alpha and thromboxane B2 (TXB2). In contrast, the infusion of ZAP alone resulted in a rapid but transient release of TXB2 from the livers. No significant changes in perfusion pressure or enzyme release were observed following ZAP administration. Perfusion of livers with a calcium-free buffer decreased the basal rates of both 6-keto PGF1 alpha and TXB2 production and significantly, but not completely, attenuated the ZAP-mediated increase in hepatic TXB2 production. Perfusion of livers with nifedipine (3 microM) had no effect on ZAP-mediated TXB2 production in this model. Isolated hepatocytes responded to ZAP-treatment with significant increases in TXB2 production. These data suggest that activated fluid phase complement components induce thromboxane production by specific cells within the liver and that this stimulation is partially dependent upon the release of intracellular calcium but independent of complement-mediated cellular injury.  相似文献   

9.

Background

Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelial dysfunction, but the role of ADMA in acute inflammatory states is less well defined.

Methods and Results

In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digital microvascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2–4 days later. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baseline plasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45–103]) than in hospital controls (143 [123–166], p<0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMA was independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile (≥0.66 µmol/L) = 20.8 [2.2–195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase in ADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.

Conclusions

Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potential mechanism linking increased plasma ADMA with organ failure and death in sepsis.  相似文献   

10.
11.
The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.  相似文献   

12.
The present study investigates the mechanism of zymosan-activated plasma (ZAP)-mediated eicosanoid production by the isolated, perfused rabbit liver and describes ZAP-induced eicosanoid stimulation in cultured hepatocytes. Perfused livers receiving untreated plasma demonstrated no significant changes in portal venous pressure or the rates of release of lactic dehydrogenase or acid phosphatase activity (indicator of cellular injury). The control group livers demonstrated stable rates of release for 6-keto PGF1α and thromboxane B2 (TXB2). In contrast, the infusion of ZAP alone resulted in a rapid but transient releaes of TXB2 from the livers. No significant changes in perfusion pressure or enzyme release were observed following ZAP administration. Perfusion of livers with a calcium-free buffer decreased the basal rates of both 6-keto PGF1α and TXB2 production and significantly, but not completely, attenuated the ZAP-mediated increase in hepatic TXB2 production. Perfusion of livers with nifedipine (3 μM) had no effect on ZAP-mediated TXB2 production in this model. Isolated hepatocytes responded to ZAP-treatment with significant increases in TXB2 production. These data suggest that activated fluid phase complement components induce thromboxane production by specific cells within the liver and that this stimulation is partially dependent upon the release of intracellular calcium but independent of complement-mediated cellular injuiry.  相似文献   

13.
Neutrophil adhesion to xenogeneic endothelium via iC3b   总被引:2,自引:0,他引:2  
Neutrophils are thought to play an important role in the pathogenesis of hyperacute rejection, a dramatic form of tissue injury caused by the reaction of antigraft antibodies with endothelial cells of an organ allograft or xenograft. We asked whether the interactions of human polymorphonuclear leucocytes (PMN) with xenogeneic endothelium might be promoted by the binding of natural anti-endothelial antibodies and complement by using porcine aortic endothelial cells (PAEC), human serum, and human PMN in an in vitro model of hyperacute rejection. Pretreatment of PAEC with 10% human serum followed by washing markedly increased PMN adhesion from 15.7 +/- 1.8% to 62.5 +/- 3.6% (p less than 0.001). Complement and anti-endothelial antibodies were necessary for the increase, because heat-inactivated serum or serum depleted of IgM did not significantly increase PMN adhesion to treated endothelium. The induction of increased PMN adhesion to PAEC by human serum was observed within 1 min. The essential role of complement was defined using complement-depleted serum. Ten percent C2-deficient serum did not increase PMN adhesion whereas 10% C5-depleted or 10% C8-depleted serum caused the same increase in PMN adhesion as observed with normal human serum. These results suggested that C3 might play a critical role in enhanced neutrophil adhesion. In fact, PAEC treated with 10% human serum for 15 min and incubated with an F(ab')2 antihuman C3 for 10 min completely abolished the enhanced adhesion. PAEC treated with 10% human serum or C5-depleted serum displayed fluorescence of iC3b whereas monolayers treated with heat-inactivated serum or C2-deficient serum were non-reactive. The enhanced PMN adhesion to serum-treated PAEC was mediated through neutrophil receptors binding iC3b because mAb directed against CD11b/CD18 inhibited the serum-enhanced adhesion of PMN. We conclude that PMN adhesion to endothelium can be significantly enhanced by the endothelial deposition of iC3b.  相似文献   

14.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

15.
It is well established that activation of neutrophils within the pulmonary circulation produces acute lung injury in which adherence of neutrophils to endothelial cells is an obligatory step in the mechanism of injury. The effects of in vivo activation of neutrophils on the in vitro responses of these cells to stimulation have not been determined, although such information may be important in understanding how different etiological factors may interact to produce infection or acute respiratory failure. By using an assay to sequentially measure superoxide anion (O2-) release from adherent neutrophils stimulated with phorbol myristate acetate (PMA), we measured the in vitro activation response of peripheral blood neutrophils isolated before and 24 h after infusion of zymosan-activated plasma (ZAP; or untreated plasma as a control), air bubbles, or PMA in awake, instrumented sheep. Each of the three inflammatory agents produced an increase in lung microvascular permeability characteristic of acute lung injury; control plasma did not. For the in vivo ZAP experiments, stimulated O2- release in vitro by using PMA was approximately 50% lower (P less than 0.05) for neutrophils isolated 24 h after the in vivo infusion (4.3 +/- 0.8 nmol/500,000 cells) than before (8.1 +/- 0.2 nmol/500,000 cells). For the air emboli or PMA in vivo experiments, there were no changes in neutrophil activation responses in vitro. Similarly, infusion of control plasma did not result in reduced neutrophil O2- release. These results show that alterations in the inflammatory potential of neutrophils may occur in vivo and that such alterations appear to be dependent on the mechanism and agent by which lung injury is produced.  相似文献   

16.
Although it is well known that endothelial cells transport serotonin (5-HT) from extracellular to intracellular locations, it has been generally assumed that smooth muscle cells do not accumulate 5-HT but, rather, respond to 5-HT through a receptor activity unrelated to uptake of this amine or via stimulation of endothelial-derived relaxing factor. In the present study smooth muscle cells (PASMC), isolated and cultured from bovine pulmonary artery, were evaluated for 5-HT uptake under a variety of conditions. 5-HT uptake was linear up to 15 min and the rate was seven- to eightfold higher than that by bovine pulmonary artery endothelial cells. There was intracellular metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA). The uptake was inhibited by exposure to 4 degrees C, absence of Na+ from the medium, and agents such as imipramine, verapamil, ketanserin, and methiothepin. Like that of endothelial cells, 5-HT uptake by PASMC was stimulated by exposure of cells to anoxia for 24 hr. Unlike endothelial cells that showed no morphological changes, PASMC at early passage showed dendritic formation after 30-60 min exposure to 5-HT at a concentration as low as 10(-8) M. Although this configurational change in response to 5-HT was lost with passage of cells, transport of 5-HT by these cells was retained. The configurational change was blocked by agents that inhibited 5-HT uptake, such as imipramine, verapamil, ketanserin, and methiothepin; it was unaffected by inhibitors of protein kinase C, phospholipase C, and calmodulin or absence of Ca2+ from the medium. We conclude that PASMC, as well as endothelial cells, accumulate 5-HT; there appears to be a close relationship between 5-HT uptake and configurational change of early passaged PASMC in culture. The factor(s) required for the configurational change are absent in endothelial cells and lost during passage of PASMC.  相似文献   

17.
Organ dysfunction is a major concern in sepsis pathophysiology and contributes to its high mortality rate. Neutrophil extracellular traps (NETs) have been implicated in endothelial damage and take part in the pathogenesis of organ dysfunction in several conditions. NETs also have an important role in counteracting invading microorganisms during infection. The aim of this study was to evaluate systemic NETs formation, their participation in host bacterial clearance and their contribution to organ dysfunction in sepsis. C57Bl/6 mice were subjected to endotoxic shock or a polymicrobial sepsis model induced by cecal ligation and puncture (CLP). The involvement of cf-DNA/NETs in the physiopathology of sepsis was evaluated through NETs degradation by rhDNase. This treatment was also associated with a broad-spectrum antibiotic treatment (ertapenem) in mice after CLP. CLP or endotoxin administration induced a significant increase in the serum concentrations of NETs. The increase in CLP-induced NETs was sustained over a period of 3 to 24 h after surgery in mice and was not inhibited by the antibiotic treatment. Systemic rhDNase treatment reduced serum NETs and increased the bacterial load in non-antibiotic-treated septic mice. rhDNase plus antibiotics attenuated sepsis-induced organ damage and improved the survival rate. The correlation between the presence of NETs in peripheral blood and organ dysfunction was evaluated in 31 septic patients. Higher cf-DNA concentrations were detected in septic patients in comparison with healthy controls, and levels were correlated with sepsis severity and organ dysfunction. In conclusion, cf-DNA/NETs are formed during sepsis and are associated with sepsis severity. In the experimental setting, the degradation of NETs by rhDNase attenuates organ damage only when combined with antibiotics, confirming that NETs take part in sepsis pathogenesis. Altogether, our results suggest that NETs are important for host bacterial control and are relevant actors in the pathogenesis of sepsis.  相似文献   

18.
Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells. There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of sepsis.  相似文献   

19.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

20.
内皮细胞与脓毒症   总被引:4,自引:0,他引:4  
李磊  汤耀卿 《生命科学》2005,17(3):236-239
血管内皮细胞是凝血启动和炎症反应激活过程中最重要的效应细胞,而脓毒症的主要病理生理学变化是严重全身感染引起的炎症反应过度激活及凝血机能障碍。因此,血管内皮细胞活化和功能障碍是脓毒症发展恶化的中心环节。更好地理解血管内皮细胞功能对于脓毒症治疗的探索及对预防多器官衰竭和弥漫性血管内凝血发生有重要意义。本文就这方面的研究进展作一简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号