首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tumour Necrosis Factor (TNF) and Lymphotoxin (LT) can exert a wide range of effects on cells and tissues and they are important effector molecules in cell mediated immunity. All these effects are induced subsequent to the binding of these cytokines to specific membrane receptors. Recently, two of these membrane receptors of 55 and 75 kDa, have been identified which share some amino acid (AA) homology in their N-terminal extracellular domains but differ in their intracellular domains. We synthesized two synthetic 20 AA peptides from hydrophilic regions of the N-terminal extracellular domains of the 55 kDa receptor; peptide A shares homology with both 55 and 75 kDa receptors, peptide B is unique. We found peptide B inhibits both the binding and cytolytic activity of recombinant human TNF when tested on murine L929 cells in vitro. Polyclonal antiserum generated against peptide B will block binding of 125I-labelled TNF to these cells in vitro. However, peptide A and antiserum prepared against peptide A are without effect in these same assay systems. These data suggest that the 20 AA sequences from AA 175 to 194 in the N-terminal extracellular domain of the 55 kDa TNF receptor are expressed on the cell surface and are involved in the binding of TNF.  相似文献   

2.
Recently, two different receptors for human tumor necrosis factor (TNF) with molecular masses of 60 kDa (p60) and 80 kDa (p80) have been identified. In this report, we investigated the effect of the soluble forms of these receptors and monoclonal antibodies against them on ligand interaction, receptor down-regulation, and mediation of cellular response in U-937 cells. Our results indicate that p60 and p80 constitute 20-30 and 60-80% of the total TNF-binding sites on U-937 cells, respectively. However, by cross-linking, only the p80 form of the receptor could be detected. In contrast to unlabeled TNF, the anti-p60 and anti-p80 antibodies together only partially inhibited ligand binding, and this inhibition was not additive. Lack of additive inhibition of binding was found to be not due to stereo-chemical hindrance. TNF binding to cells can be completely displaced by soluble forms of either the p60 or p80 receptor. However, 100-fold more of the p80 than the p60 form of the soluble receptor is needed for equivalent displacement. Under optimum conditions, TNF and the anti-p80 and anti-p60 antibodies down-regulated 30, 80, and 20% of the TNF receptors, respectively. The anti-p60 and anti-p80 antibodies down-regulated not only their own receptors, but also reciprocal receptors, suggesting a cross-communication between the p60 and p80 forms of the TNF receptor. In spite of inhibiting as much as 80% of TNF binding, none of the receptor antibodies significantly inhibited the cytotoxic response to TNF in U-937 cells. Soluble forms of both receptors, however, completely abrogated the cellular response to TNF. Thus, overall, our results indicate that the antibodies against both receptors together inhibit the majority of the receptor-ligand interaction without any significant effect on the biological response to TNF.  相似文献   

3.
Two distinct tumor necrosis factor (TNF) receptors of 55- and 75-kDa apparent molecular masses previously identified on the cell surface by monoclonal antibodies have been solubilized with Triton X-100 from HL60 cells. A filter-based dot blot assay was developed to monitor specific 125I-TNF alpha binding during fractionation of the cell extract. By a combination of immuno- and ligand affinity chromatography and reverse phase high performance liquid chromatography both receptor proteins were purified to apparent homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two bands at 55 and 51 kDa for the 55-kDa TNF receptor and a major 75-kDa and a minor 65-kDa band for the 75-kDa TNF receptor. All these bands specifically bound TNF alpha and TNF beta in ligand blot experiments. The exclusive specificity of monoclonal antibodies of the utr series for the 75.65-kDa bands and of the htr series for the 55.51-kDa bands was demonstrated with the purified antigens on Western blots. Both TNF receptor types were found to contain N-linked carbohydrates. N-terminal amino acid sequence analysis of the 55- and 51-kDa bands of the 55-kDa TNF receptor revealed identical sequences suggesting a possible truncation at the C-terminal end. Two different N-terminal sequences were determined for the 65-kDa band. One corresponded to the published sequence of ubiquitin; the other was therefore assumed to be a unique sequence of the 75-kDa TNF receptor. Additional internal sequences of this receptor were determined after proteolytic cleavage.  相似文献   

4.
We have synthesized a series of peptides, which cover almost the whole range of the N-terminal extracellular domain of human 55kDa TNF receptor (55kDa TNF-R). The peptides were examined for the binding activity to TNF by solid phase binding assay and for the inhibition of TNF cytotoxicity to mouse L-M cells. The peptide 159-178 exhibited remarkably higher binding activity to TNF than other peptides did. The specificity of the TNF binding to the peptides was confirmed by their inability to bind other cytokines. The peptide 159-178 also inhibited TNF cytotoxicity. These results indicate that the specific binding site of 55kDa TNF-R to TNF might reside within the peptide segment of amino acid numbers 159 to 178 in the N-terminal extracellular domain.  相似文献   

5.
To localize the protease(s) involved in shedding of tumor necrosis factor receptors (TNF-R) from activated neutrophils (PMN) (Porteu, F., and C. Nathan (1990) J. Exp. Med. 172, 599-607), we tested subcellular fractions from PMN for their ability to cause loss of TNF-R from intact cells. Exposure of PMN to sonicated azurophil granules at 37 degrees C resulted in inhibition of 125I-TNF binding; 50% inhibition ensued when PMN were treated for approximately 1 min with azurophil granules equivalent to 2-3 PMN per indicator cell. The TNF-R-degrading activity in azurophil granules were identified as elastase by its sensitivity to diisopropyl fluorophosphate (DFP), alpha 1-antitrypsin and N-methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone (MSAAPV-CK), and by the ability of purified elastase to reproduce the effect of azurophil granules. Elastase preferentially acted on the 75-kDa TNF-R, reducing by 85-96% the binding of 125I-TNF to mononuclear cells expressing predominantly this receptor, while having no effect on endothelial cells expressing almost exclusively the 55-kDa TNF-R. Elastase-treated PMN released a 32-kDa soluble fragment of p75 TNF-R that bound TNF and reacted with anti-TNF-R monoclonal antibodies. In contrast, fMet-Leu-Phe-activated PMN shed a 42-kDa fragment from p75 TNF-R, along with similar amounts of a 28-kDa fragment from p55 TNF-R. Shedding of both TNF-Rs by intact activated PMN was more extensive than shedding caused by elastase and was completely resistant to DFP and MSAAPV-CK. Thus, the TNF-R-releasing activity of azurophil granules is distinct from that operative in intact stimulated PMN and could provide an additional mechanism for the control of cellular responses to TNF at sites of inflammation.  相似文献   

6.
Tumor necrosis factor (TNF)-alpha acts directly on adipocytes to increase production of the lipostatic factor, leptin. However, which TNF receptor (TNFR) mediates this response is not known. To answer this question, leptin was measured in plasma of wild-type (WT), p55, and p75 TNFR knockout (KO) mice injected intraperitoneally with murine TNF-alpha and in supernatants from cultured WT, p55, and p75 TNFR KO adipocytes incubated with TNF-alpha. Leptin also was measured in supernatants from C3H/HeOuJ mouse adipocytes cultured with blocking antibodies to each TNFR and TNF-alpha as well as in supernatants from adipocytes incubated with either human or murine TNF-alpha, which activate either one or both TNFR, respectively. The results using all four strategies show that the induction of leptin production by TNF-alpha requires activation of the p55 TNFR and that although activation of the p75 TNFR alone cannot cause leptin production, its presence affects the capability of TNF-alpha to induce leptin production through the p55 TNFR. These results provide new information on the interplay between cells of the immune system and adipocytes.  相似文献   

7.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

8.
TNF-alpha regulates corneal Langerhans cell migration   总被引:6,自引:0,他引:6  
Langerhans cells (LC) belong to the dendritic cell family and mediate Ag presentation in the cornea and ocular surface. Under normal physiological conditions, the central cornea is devoid of LC. Centripetal migration of LC plays a critical role in promoting immunoinflammatory responses in the eye including allograft rejection and herpetic keratitis. The molecular mechanisms responsible for ocular LC migration are poorly understood. To examine whether TNF-alpha mediates corneal LC migration and to establish the interaction of IL-1 and TNF-alpha in regulating LC migratory capacity, we utilized gene-targeted knockout mice lacking IL-1 receptor I (IL-1RI-/-), TNF receptor I (p55-/-), TNF receptor II (p75-/-), or both (p55-/-p75-/-). LC migration was induced by thermal cautery or cytokine injection and enumerated by an immunofluorescence assay. Migration of LC after cauterization and TNF-alpha injection was significantly depressed in both p55-/- and p75-/- mice. Similarly, in the first 72 h after intracorneal injection of IL-1alpha, LC migration was reduced in p55-/-, p75-/-, and p55-/-p75-/- mice. In contrast, injection of TNF-alpha in IL-1RI-/- mice led to normal migration of corneal LC indistinguishable from wild-type controls. These results suggest that the IL-1 induction of corneal LC migration is largely mediated by TNFR function, whereas TNF-alpha induction of LC migration is independent of IL-1RI activity. Moreover, the data suggest that both p55 and p75 signaling pathways are important in mediating LC migration in the cornea.  相似文献   

9.
We previously demonstrated that tumor necrosis factor-α (TNF-α) induces rapid human neutrophil apoptosis. In this paper, we examined which of the TNF receptors, p55 kDa TNF receptor (55-R) or p75 kDa TNF receptor (75-R), or both are involved in this process using specific rabbit antisera. Antibodies to 55-R (anti55-R) or 75-R (anti75-R) alone did not induce neutrophil apoptosis. Further addition of cycloheximide and anti-rabbit immunoglobulin to anti55-R but not to anti75-R accelerated apoptosis, although anti75-R augmented the capacity of anti55-R to do so. These results suggest that 55-R is a prerequisite for TNF-α induced neutrophil apoptosis.  相似文献   

10.
Tumor necrosis factor alpha (TNF alpha) a pro-inflammatory cytokine is an endogenous mediator of septic shock, inflammation, anti-viral responses and apoptotic cell death. TNF alpha elicits its complex biological responses through the individual or cooperative action of two TNF receptors of mol. wt 55 kDa (TNF-RI) and mol. wt 75 kDa (TNF-RII). To determine signaling events specific for TNF-RII we fused the extracellular domain of the mouse CD4 antigen to the intracellular domain of TNF-RII. Crosslinking of the chimeric receptor using anti-CD4 antibodies initiates exclusively TNF-RII-mediated signals. Our findings show that: (i) TNF-RII is able to activate two members of the MAP kinase family: extracellular regulated kinase (ERK) and c-jun N-terminal kinase (JNK); (ii) TRAF2, a molecule that binds TNF-RII and associates indirectly with TNF-RI, is sufficient to activate JNK upon overexpression; (iii) dominant-negative TRAF2 blocks TNF alpha-mediated JNK activation and (iv) TRAF2 signals the activation of JNK and NF-kappaB through different pathways. Our findings suggest that TNF alpha-mediated JNK activation in fibroblasts is independent of the cell death pathway and that TRAF2 occupies a key role in TNF receptor signaling to JNK.  相似文献   

11.
Lipopolysaccharide and D-galactosamine induced lethality and apoptotic liver injury is dependent on endogenously produced tumor necrosis factor (TNF)-alpha. The present study was undertaken to determine whether membrane-associated or secreted TNF-alpha signaling through the p55 or p75 receptor was responsible for survival and hepatic injury after lipopolysaccharide administration in D-galactosamine-sensitized mice. Transgenic mice expressing null forms of TNF-alpha, the p55 and p75 receptor, and mice expressing only a cell-associated form of TNF-alpha were challenged with 8 mg D-galactosamine and 100 ng lipopolysaccharide. Mortality and apoptotic liver injury were only seen in wild-type and p75 knockout mice. p75 Knockout mice had significantly higher concentrations of plasma TNF-alpha than any other experimental group (P 相似文献   

12.
The numerous biological activities of tumor necrosis factor (TNF) appear mediated by two types of receptors of 55 kDa (TR55) and 75 kDa (TR75) molecular mass. To test TR55 for its individual role in signaling across the membrane, a cDNA coding for the human TR55 was stably expressed in murine 70Z/3 pre-B cells, which lack binding sites for, and proved nonresponsive to human TNF. The transfected TR55 showed high affinity ligand binding and active internalization. It is demonstrated that the TNF signaling cascade, i.e. stimulation of protein kinase C, sphingomyelinase, and phospholipase A2, production of the second messengers diacylglycerol and ceramide, can occur completely through exclusive binding of TNF to TR55. The p55 TNF-binding site functions as an autonomous TNF receptor that mediates key signal transduction pathways, which may control the majority of TNF actions.  相似文献   

13.
Tumor necrosis factor (TNF) is a cytokine with a wide range of biological activities in inflammatory and immunologic responses. These activities are mediated by specific cell surface receptors of 55 kDa and 75 kDa apparent molecular masses. A 75-kDa TNF receptor cDNA was isolated using partial amino acid sequence information and the polymerase chain reaction (PCR). When expressed in COS-1 cells, the cDNA transfers specific TNF-binding properties comparable to those of the native receptor. The predicted extracellular region contains four domains with characteristic cysteine residues highly similar to those of the 55-kDa TNF receptor, the nerve growth factor (NGF) receptor, and the CDw40 and OX40 antigens. The consensus sequence of the TNF receptor extracellular domains also has similarity to the cysteine-rich sequence motif LIM. In marked contrast to the extracellular regions, the intracellular domains of the two TNF receptors are entirely unrelated, suggesting different modes of signaling and function.  相似文献   

14.
Tumor necrosis factor-alpha (TNF-alpha), a protein released by activated macrophages, is involved in a wide variety of human diseases including septic shock, cachexia, and chronic inflammation. TNF binding protein (TNF-BP), a glycoprotein with high affinity to TNF-alpha isolated from urine, acts as an inhibitor of TNF-alpha by competing with the cell-surface TNF receptor. We report here the partial amino acid sequencing of human TNF-BP as well as the isolation, sequence, and expression of cDNA clones encoding a human and rat TNF receptor. The calculated Mr of the mature human and rat TNF receptor chains is 47,526 and 48,072, respectively. The extracellular ligand binding domain represents the soluble TNF-BP which is released by proteolytic cleavage. TNF-BP contains 24 cysteine residues and three potential N-glycosylation sites and shows sequence homology to the extracellular portions of TNF-R p80 chain and nerve growth factor receptor. Transfection of the human TNF receptor cDNA into mammalian cells resulted in increased binding capacity for TNF-alpha and increased reactivity with a monoclonal antibody directed against the human TNF receptor chain p60. When a stop codon was introduced into the cDNA at the site corresponding to the carboxyl terminus of TNF-BP, transfected cells secreted a protein that reacted with antibodies raised against natural TNF-BP.  相似文献   

15.
Tumor necrosis factor alpha (TNF-alpha) is a cytokine implicated in the pathogenesis of numerous chronic and acute inflammatory conditions. We have previously shown that mouse Sertoli cells respond to TNF-alpha by increasing interleukin-6 production and intercellular adhesion molecule-1 (ICAM-1) expression (1). In this cell type TNF-alpha activates the mitogen-activated protein kinase (MAPK) pathways p42/p44 MAPK, JNK/SAPK, and p38, the last of which is responsible for interleukin-6 production (1). To determine which MAPK signaling pathway is required for TNF-alpha induction of ICAM-1 expression, we have utilized the protein kinase inhibitor dimethylaminopurine, demonstrating that treatment of Sertoli cells with such compound significantly reduced ICAM-1 expression and JNK/SAPK activation. Moreover, dimethylaminopurine treatment increased the expression of MAPK phosphatase-2, providing a possible mechanism of action of this compound. By using agonist antibodies to p55 and to p75 TNF-alpha receptors and both human and mouse TNF-alpha, we demonstrate that both TNF receptors are expressed and that only the p55 receptor is involved in ICAM-1 expression. The p55 receptor activates all of the three pathways, whereas p75 failed to activate any of the MAPKs. Altogether our results demonstrate that TNF-alpha up-regulates ICAM-1 expression through the activation of the JNK/SAPK transduction pathway mediated by the p55 receptor.  相似文献   

16.
Haptoglobin (Hp), TNF-alpha, and neutrophils are parts of a highly interactive ensemble participating in inflammatory processes. Hp is taken up by neutrophils, stored within a cytoplasmic granular compartment, and is secreted during phagocytosis by those cells. In the present study, the effects of TNF-alpha on the release of Hp from human neutrophils were investigated. Incubation of neutrophils with TNF-alpha induced the release of Hp from cells in a time- and concentration-dependent manner as revealed by Western blot analysis and immunofluorescence. The release of Hp induced by TNF-alpha was not due to nonspecific lysis of the cells. TNF-alpha is a highly pleiotropic cytokine that mediates its effects by binding to two distinct receptors (p55 and p75). Administration of TNF-alpha mutants binding specifically either to the p55 or to the p75 TNF receptors showed that there is a preference of TNF-alpha for the p55 receptor in the mediation of Hp release by neutrophils. A stimulated release of Hp was also induced by the chemotactic tripeptide fMLP. The TNF-alpha-induced release of Hp from neutrophils was inhibited by erbstatin, a tyrosine kinase inhibitor. These findings suggest that TNF-alpha may promptly increase the level of Hp at sites of infection or injury, leading to the modulation of the acute inflammatory response.  相似文献   

17.
Tumour necrosis factor-alpha (TNF) has a variety of cellular effects including apoptotic and necrotic cytotoxicity. TNF activates a range of kinases, but their role in cytotoxic mechanisms is unclear. HeLa cells expressing elevated type II 75 kDa TNF receptor (TNFR2) protein, analysed by flow cytometry and Western analysis, showed altered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK; but not MAPK) protein content and activation. There was greater JNK activation, but reduced p38MAPK activation in dying cells compared to those still to enter TNF-induced apoptosis. Moreover, cells displaying more rapid apoptosis possess higher levels of type I 55 kDa TNFR1 receptor isoform, but less TNFR2. These findings reveal differential kinase activation in TNF-induced apoptotic death.  相似文献   

18.
To determine the region of human tumor necrosis factor-alpha (TNF-alpha), essential for cytotoxic activity against mouse L-M cells, single amino-acid-substituted TNF-alpha mutant proteins (muteins) were produced in Escherichia coli by protein engineering techniques. An expression plasmid for TNF-alpha was mutagenized by passage through an E. coli mutD5 mutator strain and by oligonucleotide-directed mutagenesis. Approximately 100 single amino-acid-substituted TNF-alpha muteins were produced and assayed for cytotoxic activity. The cytotoxic activities of purified TNF-alpha muteins, e.g. TNF-31T, -32Y, -82D, -85H, -115L, -141Y, -144K and -146E, were less than 1% of that of parent TNF-alpha. These results indicate that the integrity of at least four distinct regions of the TNF-alpha molecule is required for full biological activity. These regions are designated as follows: region I, from position 30 to 32; region II, from position 82 to 89; region III, from position 115 to 117; region IV, from position 141 to 146. In addition, TNF-141Y could not completely compete with parent TNF-alpha for binding to the receptor. This demonstrates that region IV, and at least aspartic acid at position 141, must be involved in the TNF receptor binding site.  相似文献   

19.
TNF is a highly pleiotropic cytokine. The recent identification of two distinct cellular receptors for TNF may provide explanations for the many different TNF activities. We have investigated the expression of the two receptor types, TNFR alpha (75 kDa) and TNFR beta (55 kDa), in human PBMC. Both receptors were found simultaneously expressed by cytofluorimetric, radioligand binding and Northern analysis of naive as well as PHA-activated PBMC. The expression levels in the CD14+ and CD14- subsets were different. Both receptors were strongly expressed in the CD14+ subset. The expression of the receptors in the CD14-, CD3+, CD4+, and CD8+ subsets was lower and similar among these subsets, but TNFR alpha was expressed at higher level than TNFR beta. To dissect the functional roles of the two receptors, we studied the growth factor activity of TNF in the late proliferative responses of PBMC to PHA. In the first approach, the activity of either receptor was blocked by neutralizing, receptor type specific antibodies. In a second approach, the ligand, TNF, was inhibited by a neutralizing antiserum, and the cells were restimulated using type-specific anti-TNFR antibodies with agonistic activity. It was found that both receptor types mediated signals required for proliferative responses of PBMC to PHA from day 4 to day 8 in culture. The cell responses to the activation of either receptor type appeared to be independent, because one receptor could not compensate for the reduction in cell activation caused by blocking the other receptor type.  相似文献   

20.
After menopause, increased tumor necrosis factor-alpha (TNF-alpha) stimulates bone resorption while inhibiting differentiation of new bone-forming osteoblasts (OB). TNF receptors, p55 and p75, signal similar intracellular pathways, but only p55 activates apoptosis. To evaluate the relationship between the TNF receptor mediating inhibition of OB differentiation and the role of apoptosis, marrow stromal cells (MSC) were cultured from mice deficient in either or both receptors. Cells grown in ascorbate and beta-glycerophosphate produce alkaline phosphatase and osteocalcin and mineralize matrix. Treatment of wild-type or p55(+/+)/p75(-/-) MSC with murine TNF (binds p55 and p75) or human TNF (binds only p55) inhibited OB differentiation. TNF did not inhibit OB differentiation in p55(-/-) MSC. Expression of p75 modestly attenuated sensitivity to TNF. To determine the role of apoptosis, changes in total DNA, cell viability, caspase 3, and percentage of annexin V-positive cells were measured in MSC and preosteoblastic MC3T3 cells. TNF treatment that reduced differentiation by 50% did not decrease cell viability or increase apoptosis, as determined by alamar blue reduction, trypan blue exclusion, and percentage of annexin V-positive cells. TNF increased caspase 3 activity 1.5-fold in MC3T3 and insignificantly in MSC cells compared with > 4-fold after 4 h actinomycin D. Treatment of MSC or MC3T3 cells with three caspase inhibitors failed to reverse the inhibitory effect of TNF on OB differentiation despite inhibition of caspase activity. These results suggest that the p55 receptor is essential, and p75 dispensable, for TNF inhibition of OB differentiation through a mechanism that does not require apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号