首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic behavior of soluble and insoluble forms of dextransucrase from Leuconostoc mesenteroides NRRL B-1299 was investigated with sucrose as substrate and maltose as acceptor. To study the parameters involved, a kinetic model was applied that was previously developed for L. mesenteroides NRRL B-512F dextransucrase. There are significant correlations between the parameters of the soluble form of B-1299 dextransucrase and those calculated for the B-512F enzyme; that is, their properties are comparable and differ from those of the insoluble form of B-1299 dextransucrase. Whereas the calculated parameters for high maltose concentrations describe the kinetic behavior very well, the time curves for low maltose concentrations were not described correctly. Therefore, the parameters were calculated separately for the two ranges. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

2.
A facile purification of Leuconostoc mesenteroides B-512FM dextransucrase   总被引:1,自引:0,他引:1  
Leuconostoc mesenteroides NRRL B-512F has been mutated by treatment with N-nitrosoguanidine. The resulting mutant (designated as B-512FM) produces 300 times as much enzyme as the parent strain. B-512FM dextransucrase was treated extensively with Sigma crude dextranase, followed by column chromatography on Bio-Gel A-5m. The purified dextransucrase had a specific activity of 84 IU/mg, a 100-fold purification with 42% yield, and was shown by SDS-PAGE to have a single protein of molecular weight of 158,000 with dextransucrase activity. The procedure has been used to produce purified enzyme for sequencing. The molecular weight of 158,000 agrees with that calculated from its amino acid sequence.  相似文献   

3.
The enzymatic glucosylation of luteolin was attempted using two glucansucrases: the dextransucrase from Leuconostoc mesenteroides NRRL B-512F and the alternansucrase from L. mesenteroides NRRL B-23192. Reactions were carried out in aqueous-organic solvents to improve luteolin solubility. A molar conversion of 44% was achieved after 24h of reaction catalysed by dextransucrase from L. mesenteroides NRRL B-512F in a mixture of acetate buffer (70%)/bis(2-methoxyethyl) ether (30%). Two products were characterised by nuclear magnetic resonance (NMR) spectroscopy: luteolin-3'-O-alpha-d-glucopyranoside and luteolin-4'-O-alpha-d-glucopyranoside. In the presence of alternansucrase from L. mesenteroides NRRL B-23192, three additional products were obtained with a luteolin conversion of 8%. Both enzymes were also able to glucosylate quercetin and myricetin with conversion of 4% and 49%, respectively.  相似文献   

4.
A gene that encodes dextransucrase S (dsrS) from Leuconostoc mesenteroides NRRL B-512F encodes a glucansucrase dextransucrase S (DSRS) which mainly produces water-soluble glucan (dextran), while the dsrT5 gene derived from dsrT of the B-512F strain encodes an enzyme dextransucrase T5 (DSRT5), which mainly produces water-insoluble glucan. Tyr340-Asn510 of DSRS and Tyr307-Asn477 of DSRT5 (Site 1), Lys696-Gly768 of DSRS and Lys668-Gly740 of DSRT5 (Site 2), and Asn917-Lys1131 of DSRS and Asn904-Lys1118 of DSRT5 (Site 3) were exchanged and six different chimeric enzymes were constructed. Water-soluble glucan produced by recombinant DSRS was composed of 64% 6-linked glucopyranoside (Glcp), 9% 3,6-linked Glcp, and 13% 4-linked Glcp. Water-insoluble glucan produced by recombinant DSRT5 was composed of 47% 6-linked Glcp and 43% 3-linked Glcp. All of the chimeric enzymes produced glucans different from the ones produced by their parental enzymes. Some of the glucans produced by chimeric enzymes were extremely changed. The Site 1 chimeric enzyme of DSRS (STS1) produced water-soluble glucan composed mostly of 6-linked Glcp. That of DSRT5 (TST1) produced water-insoluble glucan composed mostly of 4-linked Glcp. The Site 3 chimeric enzyme of DSRS (STS3) produced mainly water-insoluble glucan, DSRT5 (TST3) produced mainly water-soluble glucans, and all of the glucan fractions consisted of 3-Glcp, 4-Glcp, and 6-Glcp. The amounts of the three linkages in the water-soluble glucan produced by TST3 were about 1:1:1. Site 1 was assumed to be important for making or avoiding making alpha-1,4 linkages, while Site 3 was assumed to be important for determining the kinds of glucosyl linkages made.  相似文献   

5.
6.
Various dextransucrase molecular mass forms found in enzyme preparations may sometimes be products of proteolytic activity. Extracellular protease in Leuconostoc mesenteroides strains NRRL B-512F and B-512FMC dextransucrase preparations was identified. Protease had a molecular mass of 30 kDa and was the predominant form derived from a high molecular mass precursor. The production and activity of protease in culture medium was strongly dependent on pH. When L. mesenteroides dextransucrase (173 kDa) was hydrolyzed by protease, at pH 7 and 37 degrees C, various dextransucrase forms with molecular masses as low as 120 kDa conserving dextransucrase activity were obtained.  相似文献   

7.
Glucan formation catalyzed by two GH-family 70 enzymes, Leuconostoc mesenteroides NRRL B-512F dextransucrase and L. mesenteroides NRRL B-1355 alternansucrase, was investigated by combining biochemical and kinetic characterization of the recombinant enzymes and their respective products. Using HPAEC analysis, we showed that two molecules act as initiator of polymerization: sucrose itself and glucose produced by hydrolysis, the latter being preferred when produced in sufficient amounts. Then, elongation occurs by transfer of the glucosyl residue coming from sucrose to the non-reducing end of initially formed products. Dextransucrase preferentially produces an isomaltooligosaccharide series, whose concentration is always low because of the high ability of these products to be elongated and form high molecular weight dextran. Compared with dextransucrase, alternansucrase has a broader specificity. It produces a myriad of oligosaccharides with various alpha-1,3 and/or alpha-1,6 links in early reaction stages. Only some of them are further elongated. Overall alternan polymer is smaller in size than dextran. In dextransucrase, the A repeats often found in C-terminal domain of GH family 70 were found to play a major role in efficient dextran elongation. Their truncation result in an enzyme much less efficient to catalyze high molecular weight polymer formation. It is thus proposed that, in dextransucrase, the A repeats define anchoring zones for the growing chains, favoring their elongation. Based on these results, a semi-processive mechanism involving only one active site and an elongation by the non-reducing end is proposed for the GH-family 70 glucansucrases.  相似文献   

8.
Dextransucrase (FMCMDS) from Leuconostoc mesenteroides B-512FMCM, a dextransucrase constitutive and hyper-producing strain, catalyzes the synthesis of dextran from sucrose. The coding region for fmcmds was isolated and sequenced. It consisted of an open reading frame (ORF) of 4699 bp, coding for a 1527 amino acid protein with a molecular mass of 170 kDa. However, it showed a dextransucrase activity band at 180 kDa in SDS-PAGE. Only one nucleotide changed in the promoter site and two amino acid residues were changed in the structural gene from that of the parent L. mesenteroides NRRL B-512F dsrS; an inducible dextransucrase gene of low productivity.  相似文献   

9.
Glucose was used as acceptor to obtain small chain oligossaccharides from sucrose using dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Better conditions for the synthesis of the oligosaccharides were obtained using experimental design and response surface methodology. Yield of oligosaccharides was increased from 5% to 45% following an increase in both sucrose and glucose/sucrose concentrations, from 58 g/l to 142 g/l and from 0.02 to 0.18, respectively. Molecular weight increased from 2800 to 4500 daltons with a temperature shifting from 10°C to 30°C. © Rapid Science Ltd. 1998  相似文献   

10.
Multiple forms of dextransucrase (sucrose:1.6-alpha-D-glucan 6-alpha-D-glucosyltransferae EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F strain were shown by gel filtraton and electrophoretic analyses. Two components of enzyme, having different affinities for dextran gel, were separated by a column of Sephadex G-100. The major component voided from the Sephadex column was treated with dextranase and purified to an electrophoretically homogeneous state. The ]urified enzyme had a molecular weight of 64 000-65 000, pI value of 4.1, and 17% of carbohydrate in a molecule. EDTA showed a characteristic inhibition on the enzyme while stimulative effects were observed by the addition of exogenous dextran to the incubation mixture. The enzyme activity was stimulated by various dextrans and its Km value was decreased with increasing concentration of dextran. The purified enzyme showed no affinity for a Sephadex G-100 gel, and readily aggregated after the preservation at 4 degrees C in a concentrated solution.  相似文献   

11.
A real-time PCR assay method was established to monitor Leuconostoc spp. populations via specific amplification of the dextransucrase gene. Quantification of L. mesenteroides B-512F using both genomic DNA and cell suspensions yielded a log-linear correlation spanning approximately 5 log units. By using this method, monitoring changes of Leuconostoc spp. during sauerkraut fermentation was successfully accomplished with accuracy after inoculation of starter and sugars (sucrose and maltose).  相似文献   

12.
Initial rate kinetics of dextran synthesis by dextransucrase (sucrose:1,6-alpha-D-glucan-6-alpha-D-glucosyltransferase, EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F showed that below 1 mM, Ca2+ activated the enzyme by increasing Vmax and decreasing the Km for sucrose. Above 1 mM, Ca2+ was a weak competitive inhibitor (Ki = 59 mM). Although it was an activator at low concentration, Ca2+ was not required for dextran synthesis, either of main chain or branch linkages. Neither was it required for sucrose hydrolysis, acceptor reactions, or enzyme renaturation after SDS-polyacrylamide gel electrophoresis. A model for dextran synthesis is proposed in which dextransucrase has two Ca2+ sites, one activating and one inhibitory. Ca2+ at the inhibitory site prevents the binding of sucrose.  相似文献   

13.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

14.
1,5-Anhydro-d-fructose (AF), a metabolite of starch/glycogen degradation, is a good antioxidant. With the prospect of increasing its applications and use as a food ingredient, AF glucosylation catalysed by the dextransucrase from Leuconostoc mesenteroides NRRL B-512F was performed in the presence of sucrose. This led to AF glucosylated derivatives containing alpha-(1-->6) linkages named 1,5-anhydro-d-fructo-glucooligosaccharides (AFGOS). LC-MS analyses showed that AFGOS with a degree of polymerisation (DP) of up to 7 were synthesised. The amount of AFGOS produced and the average DP increased by using a high sucrose/AF molar ratio and high total sugar concentration. AFGOS were proved to present antioxidant properties quite similar to AF.  相似文献   

15.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

16.
Multiple forms of the extracellular dextransucrase [EC 2.4.1.5] from Leuconostoc mesenteroides NRRL B-512F strain were characterized by polyacrylamide gel electrophoresis. Based on the Rm (Relative mobility) values, a newly devised simple plot of log (Rm X 10/(1-Rm)) vs. degree of association of the enzyme showed a good correlation with the results obtained by the Hedrick-Smith method. Both results indicated that the B-512F dextransucrase aggregates were a mixture of two types of forms, i.e., oligomers of a 65 kDa protomer and their charge isomers. Boiling and treatment of the enzyme at pH 10.5 suggested that enzyme aggregates contained dextran or its fragments bound to the enzyme and the enzyme-dextran complex showed the charge isomerism. Since the highly aggregated forms showed higher activity for dextran synthesis than the dissociated forms, the endogenous dextran may serve as a source of primer and may stabilize the enzyme molecule. Besides allosteric regulation of the activity, the occurrence of oligomeric forms of the enzyme may play an important role in the control of dextran synthesis in vivo.  相似文献   

17.
Cellobiose was tested as acceptor in the reaction catalyzed by alternansucrase (EC 2.4.1.140) from Leuconostoc mesenteroides NRRL B-23192. The oligosaccharides synthesized were compared to those obtained with dextransucrase from L. mesenteroides NRRL B-512F. With alternansucrase and dextransucrase, overall oligosaccharide synthesis yield reached 30 and 14%, respectively, showing that alternansucrase is more efficient than dextransucrase for cellobiose glucosylation. Interestingly, alternansucrase produced a series of oligosaccharides from cellobiose. Their structure was determined by mass spectrometry and [13C-1H] NMR spectroscopy. Two trisaccharides are first produced: alpha-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-D-glucopyranose (compound A) and alpha-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->4)-D-glucopyranose (compound B). Then, compound B can in turn be glucosylated leading to the synthesis of a tetrasaccharide with an additional alpha-(1-->6) linkage at the non-reducing end (compound D). The presence of the alpha-(1-->3) linkage occurred only in the pentasaccharides (compounds C1 and C2) formed from tetrasaccharide D. Compounds B, C1, C2 and D were never described before. They were produced efficiently only by alternansucrase. Their presence emphasizes the difference existing in the acceptor reaction selectivity of the various glucansucrases.  相似文献   

18.
Dextransucrase (DSRS) from Leuconostoc mesenteroides NRRL B-512F is a glucosyltransferase that catalyzes the synthesis of soluble dextran from sucrose or oligosaccharides when acceptor molecules, like maltose, are present. The L. mesenteroides NRRL B-512F dextransucrase-encoding gene (dsrS) was amplified by the polymerase chain reaction and cloned in an overexpression plasmid. The characteristics of DSRS were found to be similar to the characteristics of the extracellular dextransucrase produced by L. mesenteroides NRRL B-512F. The enzyme also exhibited a high homology with other glucosyltransferases. In order to identify critical amino acid residues, the DSRS sequence was aligned with glucosyltransferase sequences and four amino acid residues were selected for site- directed mutagenesis experiments: aspartic acid 511, aspartic acid 513, aspartic acid 551 and histidine 661. Asp-511, Asp-513 and Asp-551 were independently replaced with asparagine and His-661 with arginine. Mutation at Asp-511 and Asp-551 completely suppressed dextran and oligosaccharide synthesis activities, showing that at least two carboxyl groups (Asp-511 and Asp-551) are essential for the catalysis process. However, glucan-binding properties were retained, showing that DSRS has a two-domain structure like other glucosyltransferases. Mutations at Asp-513 and His-661 resulted in greatly reduced dextransucrase activity. According to amino acid sequence alignments of glucosyltransferases, α-amylases or cyclodextrin glucanotransferases, His-661 may have a hydrogen-bonding function. Received: 16 April 1997 / Received revision: 17 June 1997 / Accepted: 23 June 1997  相似文献   

19.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

20.
Isomalto-oligosaccharides and dextrans of controlled molecular weight of about 10 and 40 kDa were produced using a simple one-step process using engineered L. mesenteroides NRRL B-512F dextransucrase variants. Isomalto-oligosaccharides were produced in a 58% yield by the acceptor reaction with glucose, and reached a degree of polymerization of at least 27 glucosyl units. Reaction conditions for optimal synthesis of dextrans of controlled molecular weight were defined, in respect of initial sucrose concentration and reaction temperature. Thus, we achieved synthesis with impressive yields of 69 and 75% for the 40 and 10 kDa dextran species, respectively. These two dextran sizes are particularly suitable for clinical applications, and are of great industrial demand. Compared with the traditional processes based on chemical hydrolysis and fractionation, which achieve only low yields, the new enzymatic methods offer improvement in quantity, quality and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号