首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net synthesis of adenosine 5'-triphosphate (ATP) in energy-depleted cells of Escherichia coli was observed when an inwardly directed protonmotive force was artificially imposed. In wild-type cells, ATP synthesis occurred whether the protonmotive force was dominated by the membrane potential (negative inside) or the pH gradient (alkaline inside). Formation of ATP did not occur unless the protonmotive force exceeded a value of 200 mV. Under these conditions, no ATP synthesis was found when cells were exposed to an inhibitor of the membrane-bound Ca2+- and Mg2+- stimulated adenosine triphosphatase (EC 3.6.1.3), dicyclohexylcarbodiimide, or to a proton conductor, carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone. Adenosine triphosphatase-negative mutants failed to show ATP synthesis in response to either a membrane potential or a pH gradient. ATP synthesis driven by a protonmotive force was observed in a cytochrome-deficient mutant. These observations are consistent with the chemiosmotic hypothesis of Mitchell (1961, 1966, 1974).  相似文献   

2.
Escherichia coli intracellular pH, membrane potential, and cell growth.   总被引:11,自引:13,他引:11       下载免费PDF全文
We studied the changes in various cell functions during the shift to alkaline extracellular pH in wild-type Escherichia coli and in strain DZ3, a mutant defective in pH homeostasis. A rapid increase in membrane potential (delta psi) was detected in both the wild type and the mutant immediately upon the shift, when both cell types failed to control intracellular pH. Upon reestablishment of intracellular pH - extracellular pH and growth in the wild type, delta psi decreased to a new steady-state value. The electrochemical proton gradient (delta muH+) was similar in magnitude to that observed before the pH shift. In the mutant DZ3, delta psi remained elevated, and even though delta muH+ was higher than in the wild type, growth was impaired. Cessation of growth in the mutant is not a result of cell death. Hence, the mutant affords an interesting system to explore the intracellular-pH-sensitive steps that arrest growth without affecting viability. In addition to delta muH+, we measured respiration rates, protein synthesis, cell viability, induction of beta-galactosidase, DNA synthesis, and cell elongation upon failure of pH homeostasis. Cell division was the only function arrested after the shift in extracellular pH. The cells formed long chains with no increase in colony-forming capacity.  相似文献   

3.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed.  相似文献   

4.
S Luvisetto  G F Azzone 《Biochemistry》1989,28(3):1100-1108
Addition of gramicidin D to liver mitochondria, incubated in low- or high-salt media, results in stimulation of respiration in the absence or presence of depression of delta muH, respectively. Gramicidin D concentrations 2 orders of magnitude higher are required in the low-salt media with full uncoupling at 1 nmol of gramicidin.mg-1. The stimulation of respiration is not accompanied by increased passive proton influx in low-salt media. In high-salt media, the extent of respiratory stimulation and the extent of delta muH depression differ according to the nature and concentration of cation. The flow-force relationship is very steep when gramicidin D induced uncoupling occurs in low-salt media and much less steep in high-salt media. A multiplicity of flow-force relationship, respiratory rate vs delta muH, is obtained, the slope of which depends on the nature and concentration of cation, and which can be reproduced by computer simulation by introducing a variable extent of proton cycling either in the membrane or in the pump. The apparent proton conductance, as analyzed in the relationship of Je/delta muH vs delta muH, increases in the so-called ohmic and nonohmic regions according to whether gramicidin D is added in high-salt or low-salt media, respectively. Titration with antimycin of the respiratory control ratio (RCR) in gramicidin D treated mitochondria leads to a depression of the RCR in high-salt but not in low-salt media. The view is discussed that in low-salt media the gramicidin D induced uncoupling is due to a cycling of protons within a proton domain operationally located at or near the proton pump.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
S Luvisetto  G F Azzone 《Biochemistry》1989,28(3):1109-1116
Gramicidin D causes inhibition of ATP synthesis either in the absence or in the presence of depression of delta muH, in low-salt and in high-salt media, respectively, at concentrations 2 orders of magnitude higher in the former with respect to the latter case. When the number of active redox pumps is reduced by increasing the antimycin concentration, the P/O ratio of respiring, gramicidin-treated mitochondria either is slightly increased in low-salt media or is first decreased and then constant in high-salt media. Addition of gramicidin D in low-salt media to mitochondria synthesizing ATP by means of artificially imposed delta muH gradients results in (a) no effect on the K+ efflux ratio +/- ADP (equivalent to the aerobic respiratory control ratio) and (b) no effect on the ATP/K+ ratio (equivalent to the P/O ratio) except at the low gramicidin D concentrations where there is also a slight enhancement of the rate of ATP hydrolysis. During respiration-driven ATP synthesis, addition of valinomycin plus K+ causes depression of delta muH with little inhibition of ATP synthesis while addition of gramicidin D causes inhibition of ATP synthesis with little depression of delta muH. The view is discussed that the gramicidin-accessible protons which uncouple aerobic ATP synthesis in a delta muH-independent manner are of a different class from the gramicidin-inaccessible protons which uncouple diffusion potential driven ATP synthesis in a delta muH-dependent manner. The gramicidin-accessible protons are suggested to be pump associated and to reflect primary events in energy transduction.  相似文献   

6.
The proton electrochemical gradient in Escherichia coli cells.   总被引:55,自引:0,他引:55  
The internal pH of Escherichia coli cells was estimated from the distribution of either 5,5-[14C]dimethyl-2,4-oxazolidinedione or [14C]methylamine. EDTA/valinomycin treatment of cells was employed to estimate delta psi from 86Rb+ distribution concomitant with the delta pH for calculation of delta muH. Respiring intact cells maintained an internal pH more alkaline by 0.63-0.75 unit than that of the milieu at extracellular pH 7, both in growth medium and KCl solutions. The delta pH decreased when respiration was inhibited by anaerobiosis or in the presence of KCN. The delta muH, established by EDTA/valinomycin-treated cells, was constant (122-129 mV) over extracellular potassium concentration of 0.01 mM-1 mM. At the lower potassium concentration delta psi (110-120 mV) was the predominant component, and at the higher concentration delta pH increased to 0.7 units (42 mV). At 150 mM potassium delta muH was reduced to 70 mV mostly due to a delta pH component of 0.89 (53 mV). The interchangeability of the delta muH components is consistent with an electronic proton pump and with potassium serving as a counter ion in the presence of valinomycin. Indeed both parameters of delta muH decreased in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone. The highest delta pH of 2 units was observed in the intact cells at pH 6; increasing the extracellular pH decreased the delta pH to 0 at pH 7.65 and to -0.51 at pH 9. A similar pattern of dependence of delta pH on extracellular pH was observed in EDTA/valinomycin-treated cells but the delta psi was almost constant over the whole range of extracellular pH values (6-8) implying electroneutral proton movement. Potassium is specifically required for respiration of EDTA-treated E. coli K12 cells since other monovalent or divalent cations could not replace potassium and valinomycin was not required.  相似文献   

7.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Proton motive force and Na+/H+ antiport in a moderate halophile.   总被引:4,自引:3,他引:1       下载免费PDF全文
The influence of pH on the proton motive force of Vibrio costicola was determined by measuring the distributions of triphenylmethylphosphonium cation (membrane potential, delta psi) and either dimethyloxazolidinedione or methylamine (osmotic component, delta pH). As the pH of the medium was adjusted from 5.7 to 9.0, the proton motive force steadily decreased from about 170 to 100 mV. This decline occurred, despite a large increase in the membrane potential to its maximum value at pH 9.0, because of the loss of the pH gradient (inside alkaline). The cytoplasm and medium were of equal pH at 7.5; membrane permeability properties were lost at the pH extremes of 5.0 and 9.5. Protonophores and monensin prevented the net efflux of protons normally found when an oxygen pulse was given to an anaerobic cell suspension. A Na+/H+ antiport activity was measured for both Na+ influx and efflux and was shown to be dissipated by protonophores and monensin. These results strongly favor the concept that respiratory energy is used for proton efflux and that the resulting proton motive force may be converted to a sodium motive force through Na+/H+ antiport (driven by delta psi). A role for antiport activity in pH regulation of the cytosol can also explain the broad pH range for optimal growth, extending to the alkaline extreme of pH 9.0.  相似文献   

9.
The vacuo-lysosomes of Hevea brasiliensis (rubber tree) constitute a suitable model system for the study of active transport and energization at the level of the membrane of plant vacuoles. The pH gradient (delta pH) and the membrane potential (delta psi) of vacuo-lysosomes were determined by means of the weak base methylamine and the lipophilic cation tetraphenylphosphonium. The values obtained depended strongly on the experimental conditions such as medium pH or K+ concentration. Under experimental conditions, i.e., pH 7.5 outside and low K+, the delta pH amounts to about 0.9 unit, interior acid, and the delta psi to -120 mV, interior negative. The delta psi is presumably caused by the imposed K+ gradient, and the internal acidification might be a consequence of the passive proton inflow along the electric field. This explanation is sustained by the ineffectiveness of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in destroying the delta pH and delta psi, whereas higher K+ concentration decreased both. Under conditions existing in vivo, the membrane potential might be significantly lower. The presence of ATP increased the acidification of the intravesicular space by 0.5pH unit to a delta pH of up to 1.4 and shifts the membrane potential at least 60mV to a more positive value. The change of the protonmotive potential did not occur with ADP; the pH-dependence of the change was identical with the pH-dependence of a vacuo-lysosomal membrane-bound ATPase, and the effect of ATPase was prevented by the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The change of protonmotive potential difference, brought about by the ATPase, was at least 90 mV. This is evidence that a vacuo-lysosomal ATPase in plants can function as an electrogenic proton pump that transfers protons into the vacuo-lysosomal space.  相似文献   

10.
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.  相似文献   

11.
Inverted membrane vesicles prepared from Escherichia coli spheroplasts were fractionated by means of sucrose gradient centrifugation, and a vesicle preparation exhibiting efficient and quantitative translocation of secretory proteins was obtained. The translocation of OmpA and an uncleavable model protein, uncleavable OmpF-Lpp, took place almost completely in 2-3 min, whereas that of OmpF-Lpp, a chimeric secretory protein, required 20 min for completion. The requirement of the proton motive force (delta muH+) for in vitro translocation was then examined with these three proteins. The translocation of all these proteins was significantly inhibited by the addition of carbonyl cyanide m-chlorophenylhydrazone (CCCP) or when stripped membrane vesicles lacking F1-ATPase were used, suggesting that delta muH+ generally participates in the translocation reaction. The inhibition was complete with OmpF-Lpp, whereas significant amounts of uncleavable OmpF-Lpp and OmpA were translocated at a slower rate even with the stripped membrane vesicles in the presence of a high concentration of carbonyl cyanide m-chlorophenylhydrazone. The delta muH+-independent translocation was inhibited by a nonhydrolyzable ATP analogue. These results indicate that although translocation of OmpF-Lpp obligatory requires delta muH+, the latter two proteins can be translocated in not only a delta muH+-dependent manner but also a delta mu H+-independent manner.  相似文献   

12.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

13.
A large variety of proOmpF-Lpps, hybrid secretory proteins composed of the signal region of proOmpF and the mature part of the major lipoprotein, either possessing or not possessing a proline residue near the amino terminus of their mature domains, were constructed at a DNA level, and the rates of their in vitro translocation were determined in the presence and absence of the proton motive force (delta muH+). A proline residue at the signal peptide cleavage site (position +1) blocked the cleavage reaction but not the translocation reaction. All the proOmpF-Lpps examined exhibited approximately the same translocation rate in the presence of delta muH+ irrespective of the presence or absence of a proline residue near the amino terminus. In the absence of the delta muH+, which was achieved by either depletion of the respiratory substrate or the use of urea-treated membrane vesicles permeable to protons, proOmpF-Lpps possessing a proline residue near the amino terminus of the mature domain were translocated whereas those possessing no proline residue in this region were not translocated at all or only very weakly. The position of the proline residue was then moved stepwise away from the amino terminus of the mature domain. The further the position was moved away, the slower was the rate of translocation in the absence of delta muH+. The removal of the proline residue at position +2 of the mature domain of proOmpA also made the delta mu(H+)-independent translocation appreciably slower. It is suggested that the conformational flexibility endowed by the proline residue on the junction region between the signal peptide and the mature domain allows the translocation in the absence of delta muH+ and that this junction region must take on a particular conformation for initiation of the translocation reaction.  相似文献   

14.
Voltage-dependent proton fluxes in liposomes   总被引:2,自引:0,他引:2  
Liposomes containing buffered KCl were prepared from bacterial lipids, were diluted into K+-free media and were treated with valinomycin to induce the formation of a diffusion potential (delta psi). Upon formation of such a potential, substantial proton influx was observed, as assayed by the quenching of 9-aminoacridine fluorescence. Complete reversal of fluorescence quenching occurred when the potential was collapsed by addition of KCl or when methylamine was added. Studies of proton influx as a function of the theoretical magnitude of the delta psi indicated that the phenomenon occurred only above a delta psi of about -60 mV. Establishment of a Na+ diffusion potential also resulted in proton influx. Treatment of K+-loaded liposomes with N,N'-dicyclohexylcarbodiimide did not reduce the delta psi-dependent proton influx. Moreover, proton influx could be demonstrated upon imposition of a diffusion potential in liposomes prepared from a synthetic lipid. The proton fluxes associated with generation of a diffusion potential in liposomes may complicate studies of reconstituted systems in which proton translocation should occur, and may affect the magnitude of the electrochemical proton gradient that is operant under some conditions.  相似文献   

15.
The sensitivity of the H+/2e- ratio of the redox-driven proton pumping by the NADH: ubiquinone reductase (complex I) of the submitochondrial particles to dicyclohexylcarbodiimide (DCCD) was studied by a thermodynamic approach, measuring the membrane potential and delta pH across the membrane and the redox potential difference across the complex I span of the respiratory chain. The delta Gr/delta muH+ ratio did not decrease upon additions of 50 or 100 nmol of DCCD per mg protein in the presence of oligomycin although the H+/2e- ratio has been demonstrated to decrease upon DCCD addition in kinetic experiments with mitochondria. Complex I then becomes reminiscent of the cytochrome bc1 complex, which shows DCCD sensitivity of the kinetically but not thermodynamically determined H+/2e- ratio.  相似文献   

16.
The electrochemical gradient of hydrogen ions, or proton motive force (PMF), was measured in growing Escherichia coli and Klebsiella pneumoniae in batch culture. The electrical component of the PMF (delta psi) and the chemical component (delta pH) were calculated from the cellular accumulation of radiolabeled tetraphenylphosphonium, thiocyanate, and benzoate ions. In both species, the PMF was constant during exponential phase and decreased as the cells entered stationary phase. Altering the growth rate with different energy substrates had no effect on the PMF. The delta pH (alkaline inside) varied with the pH of the culture medium, resulting in a constant internal pH. During aerobic growth in media at pH 6 to 7, the delta psi was constant at 160 mV (negative inside). The PMF, therefore, was 255 mV in cells growing at pH 6.3, and decreased progressively to 210 mV in pH 7.1 cultures. K. pneumoniae cells and two E. coli strains (K-12 and ML), including a mutant deficient in the H+-translocating ATPase and a pleiotropically energy-uncoupled mutant with a normal ATPase, had the same PMF during aerobic exponential phase. During anaerobic growth, however, both species had delta psi values equal to 0. Therefore, the PMF in anaerobic cells consisted only of the delta pH component, which was 75 mV or less in cells growing at pH 6.2 or greater. These data thus met the expectation that cells deriving metabolic energy from respiration have a PMF above a threshold value of about 200 mV when the ATPase functions in the direction of H+ influx and ATP synthesis; in fermenting cells, a PMF below a threshold value was expected since the enzyme functions in the direction of H+ extrusion and ATP hydrolysis. K. pneumoniae cells growing anaerobically had no delta psi whether the N source added was N2, NH+4 or one of several amino acids; the delta pH was unaffected. Therefore, any energy cost incurred by the process of nitrogen fixation could not be detected as an alteration of the proton gradient.  相似文献   

17.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

18.
The magnitude of the transmembrane electrical potential difference and the proton gradient across the energy-transducing membrane of Staphylococcus aureus were determined. The delta psi value was shown to rise from 100 to 160 mV upon alkalinization of the medium within the pH range of 5.0-8.0; at the same time, the pH value dropped from 90 to 40 mV. The proton motive force magnitude remained within the range of 191-198 mV at the pH values under study. Membrane potential generation took place, when the respiratory chain and H+-ATPase were operative. An addition of phages to cell suspensions resulted in a decrease of the membrane potential magnitude. Phage infection was effectively suppressed by inhibitors which affect the proton motive force generation in cell membranes of staphylococci.  相似文献   

19.
The rate of methane formation from H2 and CO2, the intracellular ATP content and the electrochemical proton potential (delta mu H+) were determined in cell suspensions of Methanobacterium thermoautotrophicum, which were permeabilized for K+ with valinomycin (1.2 mumol/mg protein). In the absence of extracellular K+ the cells formed methane at a rate of 4 mumol min-1 (mg protein)-1, the intracellular ATP content was 20 nmol/mg protein and the delta mu H+ was 200 mV (inside negative). When K+ was added to the suspensions the measured delta mu H+ decreased to the value calculated from the [K+]in/[K+]out ratio. Using this method of delta mu H+ adjustment, it was found that lowering delta mu H+ from 200 mV ([K+]in/[K+]out = 1000) to 100 mV ([K+]in/[K+]out = 40) had no effect on the rate of methane formation and on the intracellular ATP content. At delta mu H+ values below 100 mV ([K+]in/[K+]out less than 40) both the rate of methanogenesis and the ATP content decreased. Methanogenesis completely ceased and the ATP content was 2 nmol/mg when delta mu H+ was adjusted to values lower 50 mV ([K+]in/[K+]out less than 7). The data show that methanogenesis from H2 and CO2 and ATP synthesis in M. thermoautotrophicum are possible at relatively low electrochemical proton potentials. Similar results were obtained with Methanosarcina barkeri. Protonophoric uncouplers like 3,5,3',4'-tetrachlorosalicylanilide (TCS) or 3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile (SF 6847) were found not to dissipate delta mu H+ below 100 mV in M. thermoautotrophicum even when used at high concentrations (400 nmol/mg protein). This finding explains the observed uncoupler insensitivity of methanogenesis and ATP synthesis in this organism.  相似文献   

20.
Methanogenic bacteria are considered to couple methane formation with the synthesis of ATP by a chemiosmotic mechanism. This hypothesis was tested with Methanobacterium thermoautotrophicum. Methane formation from H2 and CO2 (2.5 - 3 mumol X min-1 X mg cells-1) by cell suspensions of this organism resulted in the formation of an electrochemical proton potential (delta mu H +) across the cytoplasmic membrane of 230 mV (inside negative) and in the synthesis of ATP up to an intracellular concentration of 5 - 7 nmol/mg. The addition of ionophores at concentrations which completely dissipated delta mu H + without inhibiting methane formation did not result in an inhibition of ATP synthesis. It thus appears that delta mu H + across the cytoplasmic membrane is not the driving force for the synthesis of ATP in M. thermoautotrophicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号