首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently reported the marked increase in frequency which can be achieved in the detection of the anti-Jo-1 antibody of polymyositis in serum samples by replacing commercial mixtures of cytoplasmic and nuclear antigens with the purified antigen, histidyl-tRNA synthetase. The present paper describes a method for purifying this antigen and an investigation of its size. Molecular masses previously reported for the enzyme have varied from 85-154 kDa and subunit molecular masses varying from 40-77 kDa have been observed. Several of these fragments are of sizes similar to those of a number of other autoantigens commonly observed in connective tissue diseases. Since the clinical identification of these autoantigens often relies exclusively on size determination by Western blotting, we have characterized the commonly occurring fragments of histidyl-tRNA synthetase lest they confuse such identification. It is concluded that histidyl-tRNA synthetase, like many other aminoacyl-tRNA synthetases, is subject to severe proteolysis during extraction procedures. Several characteristic fragments (Mr = 80, 75, 61, 55, 50 and 45 kDa) result, a finding that provides a satisfactory explanation of the various values previously reported. The intact bovine enzyme is a dimer of molecular mass close to 160 kDa.  相似文献   

2.
Association of glycoconjugates with the cytoskeletal framework.   总被引:2,自引:0,他引:2       下载免费PDF全文
The association of glycoconjugates with the cytoskeletal framework was examined in detergent-extracted cells. Sparse cultures of fibroblasts that assemble only minimal amounts of extracellular matrix were extracted under mild conditions with Triton X-100 which remove most of the lipids and soluble cellular proteins. The detergent-resistant framework retains lectin binding sites in the nucleus, in the perinuclear area occupied by the rough endoplasmic reticulum-Golgi system of the intact cell, and in a network throughout the cytoskeletal framework. Fluorescent-antibody staining with antibody against collagen type I and fibronectin reveals extensive perinuclear staining of the remnant rough endoplasmic reticulum-Golgi system. In contrast, only sporadic staining of the pericellular area is obtained with these antibodies, in sparse cultures of whole cells. Lectin binding sites were detected in the nucleus and are attributed to chromatin-associated glycoconjugates. They can be removed by DNase under conditions that preserve the cytoplasmic lectin binding sites and the nuclear matrix. The results suggest a high degree of integration of the membrane residues of the cytoplasmic elements and the nuclear matrix with the skeletal framework and indicate a possible role for the glycoconjugates in this structural integration.  相似文献   

3.
M Cervera  G Dreyfuss  S Penman 《Cell》1981,23(1):113-120
When the cytoskeletal framework is prepared from suspension-grown HeLa by extraction with nonionic detergent, all the polyribosomes are associated with the framework while 80% of tRNA and the major portion of monoribosomes as well as 75% of the cell proteins are found in the soluble fraction. The mRNA of polyribosomes is bound to the cytoskeleton and these molecules remain attached even after polyribosomes are disassembled in vivo prior to extraction. Although all actively translating message molecules are attached to the framework, about one quarter of the poly(A)+ mRNA is free of the framework. The binding of message to the skeleton may be obligatory for translation. Upon infection with VSV, all the viral polyribosomes but not all the viral messages of the infected cell are associated with the cytoskeletal framework. Pulse-chase labeling shows that VSV messages initially associate with the framework and then later detach and cease translation. The mRNA for the viral glycoprotein (G), known to translate only on ribosomes bound to endoplasmic reticulum, is also retained by the detergent-extracted structure. It appears that the protein substructure of the endoplasmic reticulum which binds polyribosomes is a component of the cytoskeletal framework.  相似文献   

4.
The cdc64-1 mutation causes G(1) arrest in Saccharomyces cerevisiae corresponding to a type II Start phenotype. We report that CDC64 encodes Ala1p, an alanyl-tRNA synthetase. Thus, cdc64-1 might affect charging of tRNA(Ala) and thereby initiation of cell division.  相似文献   

5.
Cytoskeletal adaptor proteins serve vital functions in linking the internal cytoskeleton of cells to the cell membrane, particularly at sites of cell-cell and cell-matrix interactions. The importance of these adaptors to the structural integrity of the cell is evident from the number of clinical disease states attributable to defects in these networks. In the heart, defects in the cytoskeletal support system that surrounds and supports the myofibril result in dilated cardiomyopathy and congestive heart failure. In this study, we report the cloning and characterization of a novel cytoskeletal adaptor, obscurin-like 1 (OBSL1), which is closely related to obscurin, a giant structural protein required for sarcomere assembly. Multiple isoforms arise from alternative splicing, ranging in predicted molecular mass from 130 to 230 kDa. OBSL1 is located on human chromosome 2q35 within 100 kb of SPEG, another gene related to obscurin. It is expressed in a broad range of tissues and localizes to the intercalated discs, to the perinuclear region, and overlying the Z lines and M bands of adult rat cardiac myocytes. Further characterization of this novel cytoskeletal linker will have important implications for understanding the physical interactions that stabilize and support cell-matrix, cell-cell, and intracellular cytoskeletal connections.  相似文献   

6.
The review is focused on the molecular structure and function of the proteins composing the actin-based cytokeletal cortex, located at the cytoplasmic face of plasma membranes of eucaryotic cells, which stabilizes integral membrane proteins in separate domains of cell membranes. It includes a survey of the molecular properties of teh proteins of the erythrocyte membrane skeleton such as spectrin, ankyrin, protein 4.1, and adducin. The properties of the immunological counterparts of erythroid cortical proteins found in nonerythroid tissues and cells are compared. The structural organization and function of the newly discovered class of calcium-binding proteins, nonerythroid peripheral membrane proteins, calpactins, are also described. Finally, the discussion of some experimental models illustrates that the membrane skeleton of living cells is actively involved in a wide variety of essential biological functions ranging from differentiation, to maintenance of cell polarity and cell shape, and regulation of exocytotic processes.  相似文献   

7.
1. Subfractionation by isopycnic density-gradient centrifugation in self-generating Percoll gradients of peroxisome-rich fractions prepared by differential centrifugation confirmed the presence of acyl-CoA synthetase in peroxisomes. Peroxisomes did not contain nicotinamide or adenine nucleotides other than CoA. 2. The gradient fractions most enriched in peroxisomes were pooled and the peroxisomes sedimented by centrifugation, resulting in a 50-fold-purified peroxisomal preparation as revealed by marker enzyme analysis. 3. Palmitate oxidation by intact purified peroxisomes was CoA-dependent, whereas palmitoyl-CoA oxidation was not, demonstrating that the peroxisomal CoA was available for the thiolase reaction, located in the peroxisomal matrix, but not for acyl-CoA synthetase. This suggests that the latter enzyme is located at the cytoplasmic side of the peroxisomal membrane. 4. Additional evidence for this location of peroxisomal acyl-CoA synthetase was as follows. Mechanical disruption of purified peroxisomes resulted in the release of catalase from the broken organelles, but not of acyl-CoA synthetase, indicating that the enzyme was membrane-bound. Acyl-CoA synthetase was not latent, despite the fact that at least one of its substrates appears to have a limited membrane permeability, as evidenced by the presence of CoA in purified peroxisomes. Finally, Pronase, a proteinase that does not penetrate the peroxisomal membrane, almost completely inactivated the acyl-CoA synthetase of intact peroxisomes.  相似文献   

8.
Wild-type and mutant chicken integrin beta 1 subunit (beta 1c) cDNAs were expressed in NIH 3T3 cells and assayed for localization in focal adhesions of cells plated on fibronectin substrates. Focal adhesion localization in stable transfected cells was assayed by indirect immunofluorescent staining with chicken-specific anti-beta 1c antibodies. Mutant beta 1c integrins containing internal deletions of 13 amino acids adjacent to the membrane, delta 759-771, and 20 centrally located amino acids, delta 771-790, localized in focal adhesions demonstrating that sequences required for direction to focal adhesion structures were not limited to one region of the cytoplasmic domain. Point mutations revealed three clusters of amino acids which contribute to localization in focal adhesions. These three clusters or signals are: cyto-1 (764-774), cyto-2 (785-788), and cyto-3 (797-800). The 11-residue cyto-1 signal is only found on integrin beta subunit sequences, except beta 4. Four residues within this region, D764, F768, F771, and E774, could not be altered without reducing focal adhesion staining intensities, and likely form a signal that occupies one side of an alpha helix. Mutations involving two cyto-1 residues, K770 and F771, also appeared to affect heterodimer affinity and specificity. Cyto-2 (785-788,), NPIY, is an NPXY signal that forms a tight turn motif. Cyto-2 provides a structural conformation, which when perturbed by proline removal or addition, inhibits integrin localization in focal adhesions. Cyto-3 (797-800), NPKY, resembles cyto-2, however, the nonconserved proline residue can be replaced without alteration of the localization phenotype. Cyto-3, therefore, constitutes a unique integrin signal, NXXY. Both serine and tyrosine residues at positions 790 and 788, respectively, which have been implicated in integrin phosphorylation/regulation, were conservatively replaced without detectable effect on focal adhesion localization. However, acidic replacements for these amino acids reduced focal adhesion staining intensities, suggesting that phosphorylation at these sites may negatively regulate integrin function.  相似文献   

9.
The association of mRNA and ribosomes with the cytoskeleton of eucaryotic cells may be important for protein synthesis and its regulation. HeLa cells were gently lysed with detergent, and soluble and cytoskeletal framework subfractions were prepared by centrifugation. We analyzed these fractions for ribosomes and confirmed earlier findings that polysomes are preferentially associated with the cytoskeletal fraction. The levels of initiation factors elF-2, elF-3, elF-4A, and elF-4B were quantitated by immunoblotting; all are enriched in the cytoskeletal fraction relative to the soluble fraction. Heat shock, fluoride, pactamycin, and cytochalasin caused the release of both ribosomes and initiation factors into the soluble fraction. However, treatment of the cytoskeletal fraction with EDTA or low levels of ribonuclease resulted in polysome degradation but no release. Therefore initiation factor association with the cytoskeletal framework correlates with the presence of ribosomes, whereas ribosome association does not require intact mRNA.  相似文献   

10.
A multitude of studies has indicated that the vast majority of mRNA and polyribosomes is associated with the detergent-resistant cytoskeletal framework (CSK). However, the nature and purpose of this association remain unclear. To begin unraveling the factors which may mediate this phenomenon, we examined the extent of association of four mRNAs (tubulin, vimentin, actin, and histone mRNA) with the CSKs of NIH 3T3 cells over a wide range of salt concentrations. Results indicate that the vast majority (greater than 90%) of each of these mRNAs remains associated with the CSK after detergent extraction of cells in low ionic strength buffer (25 mM NaCl). This association is manifest under conditions that cause the complete depolymerization of microtubules but that leave microfilaments and intermediate filaments intact. Even after extensive washing in buffer of approximately physiological ionic strength (150 mM NaCl), 75-85% of these mRNAs still remain associated with the CSK. However, at least 50% of each of these mRNAs can be eluted from the CSK by washing with buffer containing 250 mM NaCl. Not all the mRNAs, though, display the same elution profile. This suggests that different binding sites and/or different binding affinities may exist for different mRNAs. Surprisingly, close to 50% of the polyribosome population remains bound to the CSK despite washing in as much as 1.0 M NaCl. These adherent polyribosomes appear to be of the same size as those that are eluted, allaying the possibility that they are retained by the CSK simply due to size exclusion. Collectively, these data strongly imply that mRNAs are neither weakly adsorbed to the CSK nor physically trapped within the meshwork of cytoskeletal filaments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

12.
Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. The muscle-fiber molecular phenotype exhibits similarities to both Alzheimer-disease (AD) and Parkinson-disease (PD) brains, including accumulations of amyloid-beta, phosphorylated tau, alpha-synuclein, and parkin, as well as evidence of oxidative stress and mitochondrial abnormalities. Early-onset autosomal-recessive PD can be caused by mutations in the DJ-1 gene, leading to its inactivation. DJ-1 has antioxidative and mitochondrial-protective properties. In AD and PD brains, DJ-1 is increased and oxidized. We studied DJ-1 in 17 s-IBM and 18 disease-control and normal muscle biopsies by: (1) immunoblots of muscle homogenates and mitochondrial fractions; (2) real-time PCR; (3) oxyblots evaluating DJ-1 oxidation; (4) light- and electron-microscopic immunocytochemistry. Compared to controls, in s-IBM muscle fibers DJ-1 was: (a) increased in the soluble fraction, monomer 2-fold (P = 0.01), and dimer 2.8-fold (P = 0.004); (b) increased in the mitochondrial fraction; (c) highly oxidized; and (d) aggregated in about 15% of the abnormal muscle fibers. DJ-1 mRNA was increased 3.5-fold (P = 0.034). Accordingly, DJ-1 might play a role in human muscle disease, and thus not be limited to human CNS degenerations. In s-IBM muscle fibers, DJ-1 could be protecting these fibers against oxidative stress, including protection of mitochondria.  相似文献   

13.
The functions of evolved mammalian supramolecular assemblies and extensions of enzymes are not well understood. Human lysyl-tRNA synthetase (hKRS) only upon the removal of the amino-terminal extension (hKRSΔ60) bound to EF1α and was stimulated by EF1α in vitro. HKRS and hKRSΔ60 were also differentially stimulated by aspartyl-tRNA synthetase (AspRS) from the multi-synthetase complex. The non-synthetase protein from the multi-synthetase complex p38 alone did not affect hKRS lysylation but inhibited the AspRS-mediated stimulation of hKRS. These results revealed the functional interactions of hKRS and shed new lights on the functional significance of the structural evolution of multienzyme complexes and appended extensions.  相似文献   

14.
Human Dectin-1, a type II transmembrane receptor, is alternatively spliced, generating eight isoforms. Of these isoforms, the isoform E (hDectin-1E) is structurally unique, containing a complete C-type lectin-like domain as well as an ITAM-like sequence. So far, little is known about its function. In the present study, we demonstrated that hDectin-1E was not secreted and it mainly resided in the cytoplasm. Using yeast two-hybrid screening, we identified a Ran-binding protein, RanBPM, as an interacting partner of hDectin-1E. GST pull-down assays showed that RanBPM interacted directly with hDectin-1E and the region containing SPRY domain was sufficient for the interaction. The binding of hDectin-1E and RanBPM was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Taken together, our data provide a clue to the understanding of the function about hDectin-1E.  相似文献   

15.
Background information. Spermatozoa are formed via a complex series of cellular transformations, including acrosome and flagellum formation, nuclear condensation and elongation and removal of residual cytoplasm. Nuclear elongation is accompanied by the formation of a unique cytoskeletal structure, the manchette. We have previously identified a leucine‐rich repeat protein that we have named TLRR (testis leucine‐rich repeat), associated with the manchette that contains a PP1 (protein phosphatase‐1)‐binding site. Leucine‐rich repeat proteins often mediate protein–protein interactions; therefore, we hypothesize that TLRR acts as a scaffold to link signalling molecules, including PP1, to the manchette near potential substrate proteins important for spermatogenesis. Results. TLRR and PP1 interact with one another as demonstrated by co‐immunoprecipitation and the yeast two‐hybrid assay. TLRR binds more strongly to PP1γ2 than it does to PP1α. Anti‐phosphoserine antibodies immunoprecipitate TLRR from testis lysate, indicating that TLRR is a phosphoprotein. TLRR is part of a complex in testis that includes cytoskeletal proteins and constituents of the ubiquitin–proteasome pathway. The TLRR complex purified from 3T3 cells contains similar proteins, co‐localizes with microtubules and is enriched at the microtubule‐organizing centre. TLRR is also detected near the centrosome of elongated, but not mid‐stage, spermatids. Conclusion. We demonstrate here that TLRR interacts with PP1, particularly the testis‐specific isoform, PP1γ2. Immunoaffinity purification confirms that TLRR is associated with the spermatid cytoskeleton. In addition, proteins involved in protein stability are part of the TLRR complex. These results support our hypothesis that TLRR links signalling molecules to the spermatid cytoskeleton in order to regulate important substrates involved in spermatid transformation. The translocation of TLRR from the manchette to the centrosome region suggests a possible role for this protein in tail formation. Our finding that TLRR is associated with microtubules in cultured cells suggests that TLRR may play a common role in modulating the cytoskeleton in other cell types besides male germ cells.  相似文献   

16.
17.
Cytochalasin D was shown to be a reversible inhibitor of protein synthesis in HeLa cells. The inhibition was detectable at drug levels typically used to perturb cell structure and increased in a dose-dependent manner. The drug also released mRNA from the cytoskeletal framework in direct proportion to the inhibition of protein synthesis. The released mRNA was unaltered in its translatability as measured in vitro but was no longer translated in the cytochalasin-treated HeLa cells. The residual protein synthesis occurred on polyribosomes that were reduced in amount but displayed a normal sedimentation distribution. The results support the hypothesis that mRNA binding to the cytoskeletal framework is necessary although not sufficient for translation. Analysis of the cytoskeletal framework, which binds the polyribosomes, revealed no alterations in composition or amount of protein as a result of treatment with cytochalasin D. Electron microscopy with embedment-free sections shows the framework in great detail. The micrographs revealed the profound reorganization effected by the drug but did not indicate substantial disaggregation of the cytoskeletal elements.  相似文献   

18.
p56lck and p60c-src are closely related protein-tyrosine kinases that are activated by similar oncogenic mutations. We have used fibroblast cell lines that express p56lck from introduced DNA molecules to compare the subcellular localizations of p60c-src and p56lck and their abilities to bind polyomavirus middle T antigen (mT). p56lck is associated with the detergent-insoluble matrix, as defined by extraction with solutions containing nonionic detergents, whereas p60c-src is soluble under these conditions. p56lck is also associated with detergent-insoluble structures in a lymphoid cell line, LSTRA. p60c-src binds to mT, but p56lck does not bind detectably. In terms of both solubility and mT interactions, the nononcogenic p56lck more closely resembles oncogenically activated p60c-src mutants than it resembles p60c-src. Because published results show that an intact carboxy terminus is required for p60c-src to bind mT and be soluble, we tested whether the different localization and mT binding properties of p56lck and p60c-src were dictated by their different carboxy termini. A protein consisting largely of p60c-src sequences but carrying a p56lck carboxy terminus was soluble and bound to mT. We suggest that both the solubility and mT-binding properties of p60c-src not only require sequences common to the carboxy termini of p60c-src and p56lck, but also require sequences unique to the body of p60c-src.  相似文献   

19.
A fragment of DNA from the yeast nuclear gene MST1 that codes for the mitochondrial tRNAThr1 synthetase was used as a probe to screen for other yeast threonyl-tRNA synthetase genes. At low stringency, the MST1 probe hybridizes strongly to a 6.6 kb EcoRI fragment of yeast genomic DNA with the homologous gene and in addition hybridizes more weakly to a smaller 3.6 kb EcoRI fragment with a second threonyl-tRNA synthetase gene (THS1). To clone THS1, a library was constructed by ligation to pUC18 of size selected (3-4.5 kb) EcoRI fragments of genomic DNA. Several clones containing the 3.6 kb EcoRI fragment were isolated. A 2,202 nucleotide long open reading frame corresponding to THS1 has been identified in the cloned fragment of DNA. The predicted protein encoded by THS1 is 38% identical to the E. coli threonyl-tRNA synthetase over the latter's length (642 amino acids) and is 42% identical to the predicted MST1 product over its 462 residues. In situ disruption of the chromosomal copy of THS1 is lethal to the cell, indicating that this gene codes for the cytoplasmic threonyl-tRNA synthetase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号