首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intratypic osteosarcoma hybrids were constructed by fusing the human osteoblast-like osteosarcoma SaOS-2 with the rat osteoblast-like osteosarcoma UMR-106. Both of these osteosarcomas express liver/bone/kidney alkaline phosphatase (ALPL), but only the UMR-106 cell line expresses osteopontin (OPN), a gene expressed during later stages of osteoblast differentiation. Analysis of osteoblast gene expression in these hybrids demonstrated that ALPL continued to be expressed; however, OPN steady-state mRNA levels were dramatically reduced in four hybrids. Quantitative measurements indicated theft OPN steady-state mRNA levels were extinguished by a factor of 20- to 1000-fold. Since SaOS-2 chromosomes are preferentially lost from these hybrids, subclones of extinguished hybrids were isolated that reexpressed OPN mRNA at levels similar to the UMR-106 parental line. These data indicate that trans-acting negative regulatory factors, expressed from the SaOS-2 genome, are responsible for OPN extinction. This report provides the first demonstration of the negative regulation of OPN gene expression and also provides additional evidence that extinction plays a role in the regulation of osteoblast gene expression.  相似文献   

2.
Tumor cells frequently have pronounced effects on the skeleton including bone destruction, bone pain, hypercalcemia, and depletion of bone marrow cells. Despite the serious sequelae associated with skeletal metastasis, the mechanisms by which tumor cells alter bone homeostasis remain largely unknown. In this study, we tested the hypothesis that the disruption of bone homeostasis by tumor cells is due in part to the ability of tumor cells to upregulate osteopontin (OPN) mRNA in osteoblasts. Conditioned media were collected from tumor cells that elicit either osteolytic (MCF-7, PC-3) or osteoblastic responses (LNCaP) in animal models and their effects on OPN gene expression were compared using an osteoblast precursor cell line, MC3T3-E1 cells. Secretory products from osteolytic but not osteoblastic tumor cell lines were demonstrated to upregulate OPN in osteoblasts while inhibiting osteoblast proliferation and differentiation. Signal transduction studies revealed that regulation of OPN was dependent on both protein kinase C (PKC) and the mitogen-activated protein (MAP) kinase cascade. These results suggest that the upregulation of OPN may play a key role in the development of osteolytic lesions. Furthermore, these results suggest that drugs that prevent activation of the MAP kinase pathway may be efficacious in the treatment of osteolytic metastases.  相似文献   

3.
4.
女贞子对大鼠成骨细胞增殖与分化的影响   总被引:1,自引:0,他引:1  
为探讨女贞子Fructus Ligustri Lucidi体外对大鼠成骨样细胞UMR-106增殖与分化的影响,女贞子水提物(LWE)以不同浓度加入细胞培养体系,用Am-Blue细胞增殖与活性检测试剂检测成骨细胞的增殖情况;以检测细胞内碱性磷酸酶的活性为指标考察成骨细胞的分化情况。结果表明,LWE在100μg/mL作用48 h能促进细胞的增殖,作用24~48 h能明显促进细胞的分化。在转染了5×ERE-Luc荧光素酶报告基因质粒的乳腺癌细胞MCF-7中检测到LWE能促进雌激素受体反应元件调控下的荧光素酶的表达;且LWE促UMR-106细胞分化的作用能被雌激素受体拮抗剂ICI18270所抑制,表明女贞子很可能是通过雌激素受体信号途径对成骨细胞的分化起作用的。  相似文献   

5.
6.
Bone morphogenetic proteins (BMP) play a pivotal role in growth and differentiation of osteoblastic lineage cells. BMPs are potent stimulators of bone formation in various animal models. To understand the mechanism of BMP action in bone cells, we have investigated the effects of overexpression of the BMP-2 gene on proliferation and differentiation of UMR-106 rat osteosarcoma cells. A stable UMR-106 cell line overexpressing the BMP-2 gene was established by transfection of cells using a mammalian expression vector harboring human BMP-2 cDNA followed by G418 selection. After introduction of the BMP-2 gene, UMR-106 cells appeared more spindle-shaped in morphology compared to the predominantly cuboidal appearance of the parental cells. Overexpression of BMP-2 markedly inhibited proliferation as measured by cell counting and [3H]thymidine incorporation assays. Extracellular matrix (ECM) derived from cells overexpressing BMP-2 exhibited a less supportive effect on proliferation of UMR cells than did ECM derived from parental cells. Furthermore, cell-cell communication through gap junctions was reduced more than 50% as determined by nondisruptive fluorescent dye transfer assays. Overexpression of BMP-2 significantly stimulated expression of osteocalcin and alkaline phosphatase genes, indicating its role in osteoblastic differentiation. There was little effect on osteopontin gene expression.  相似文献   

7.
8.
It have been reported that abnormal bone metabolism often occurs in patients with type 2 diabetes, but the underlying mechanisms remain to be elucidated. In recent years dyslipidemia (hyperlipidemia) has been presumed to have an influence on bone metabolism. In addition, the involvements of VEGF and MCP-1 derived from osteoblasts in bone abnormal metabolism were also observed. Thus, we investigated the pathogenic mechanism of this abnormal bone metabolism, which is included in the regulation of VEGF and MCP-1 secretions from osteoblasts, by using UMR-106 osteosarcoma cells as an osteoblast cell model and treating them with palmitate in order to mimic a state of hyperlipidemia.  相似文献   

9.
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.  相似文献   

10.
11.
12.
Although a small number of estrogen receptors (ER) were visualized in osteoblastic cells, and estradiol (E2) has some effects on osteoblasts in vitro, the direct action of E2 on osteoblasts has not been fully established. To determine the presence of functional ER in osteoblasts, we transfected cells with a plasmid containing the chloramphenicol acetyl transferase (CAT) reporter gene and the estrogen-responsive element (ERE) from the vitellogenin A2 gene. E2-dependent induction of CAT activity was determined 48 h after transient transfection and subsequent treatment with 10-100 nM 17 beta-E2. 17 beta-E2, but not 17 alpha-E2, dihydrotestosterone, or progesterone, induced CAT activity in a dose-dependent manner (up to 6-fold) in rat calvarial fraction-3, RCT-3, PyMS, and UMR-106 cells as well as in the human osteosarcoma cell line SaOS-2/B-10. In contrast, E2 had no effect on the induction of CAT activity in the preosteoblastic cell lines RCT-1 and TRAB-11, in the rat osteosarcoma cell line ROS 17/2.8, and in the fibroblastic cell lines BALB-c/3T3 and NRK. Over-expression of ER using a simian virus-40-based expression vector not only conferred or enhanced E2-dependent induction of CAT in all cell types, but augmented E2-dependent expression of insulin-like growth factor-I and E2-stimulated DNA synthesis in primary calvarial and PyMS osteoblastic cells, respectively. These data show the presence of low levels of functional endogenous ER in some, but not all, osteoblastic cells and suggest that the abundance of ER may be rate limiting in the action of E2 on these cells.  相似文献   

13.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

14.
Measurements of free cystolic Ca2+ ([Ca2+]i) and Ba2+ ([Ba2+]i) concentrations with Fura 2 were used to identify and characterize the properties of a depolarization-activated Ca2+ and Ba2+ entry in the plasma membrane of osteoblast-like cells. The presence of this pathway was demonstrated in two osteoblastic cell lines, UMR-106 and MC3T3-E1 and osteoblasts isolated from rat long bone and rat neonatal calvariae. Subsequent characterization of the pathway was performed in the osteosarcoma cell line UMR-106. Depolarization of the cells with high medium K+ was followed by an increase in [Ca2+]i which was dependent on medium Ca2+. Ba2+ ions depolarized the cells and were transported by this pathway. Mg2+ ions interfered with Ca2+ and Ba2+ entry. At 140 mM KCl and 1 mM MgCl2, the pathway could be saturated with Ca2+ or Ba2+. The apparent affinity for Ca2+ was 0.78 mM and for Ba2+ 1.82 mM. Ca2+ or Ba2+ entry into the cells was blocked by low concentrations of nicardipine, diltiazem, verapamil, and La3+. In the absence of an increase in [Ca2+]i or [Ba2+]i, the pathway inactivated within about 5 min after depolarization. When [Ca2+]i or [Ba2+]i was allowed to increase, the pathway inactivated within about 20 s. These properties suggest that Ca2+ and Ba2+ entry are mediated by an L-type, depolarization-activated Ca2+ channel in osteoblasts. The activity of these channels changes little with an increase or decrease in cell volume. Thus, it is concluded that these pathways do not provide the Ca2+ entry pathway required for initiation of volume decrease by osteoblasts.  相似文献   

15.
PGE2 and prostacyclin each enhance cAMP synthesis in the osteoblast-like cell line UMR-106. The amount of cAMP induced by PGE2 was 5-7-fold greater than the amount induced by cicaprost or iloprost, stable prostacyclin analogues. Both PGE2 and the two prostacyclin analogues enhanced cAMP synthesis with similar time dependence. The EC50 values of PGE2 and cicaprost were 3 X 10(-6) and 5 x 10(-8) M, respectively. Short-term incubation of the cells with 12-o-tetradecanoylphorbol 13-acetate (TPA) markedly reduced the PGE2-induced cAMP synthesis. In contrast, cells that were incubated with the same concentrations of TPA in the presence of cicaprost or iloprost showed a 1.6-fold increase in cAMP formation. The marked disparity between the cAMP response to cicaprost and PGE2 in the presence of TPA suggests that the two prostanoids induce cAMP synthesis in the UMR-106 cells by interaction with different receptors. These observations support the idea that the osteoblastic UMR-106 cells may express specific prostacyclin receptors and suggest that prostacyclin may have a unique role in osteoblasts.  相似文献   

16.
17.
18.
Modulation of endothelin (ET-1)-induced [Ca(2+)](i)transients and receptor expression by parathyroid hormone (PTH) was studied in UMR-106 osteoblastic osteosarcoma cells. Ca(2+)signaling was assessed with Fura-2, and ET receptor mRNA expression was determined using ET(A)- and ET(B)-specific primers and RT-PCR amplification. ET-1 binding in UMR-106 cell membranes was also measured. PTH pretreatment for 8 h decreased the [Ca(2+)](i)transients elicited by ET-1 and by the ET(B)-selective agonist sarafotoxin 6c (S6c). When ET(B)receptors were desensitized by pretreatment with S6c or blocked with the ET(B)-selective antagonist BQ-788, the remaining ET(A)component of the signal was also decreased by PTH pretreatment. In contrast, [Ca(2+)](i)transients elicited by PGF(2alpha)and ionomycin were increased following PTH pretreatment, indicating that the effect of PTH to decrease ET-1-stimulated transients was selective. PTH pretreatment also decreased [(125)I]ET-1 binding and ET(A)and ET(B)mRNA, with maximal effects at approximately 8 h. ET-1 was not detectable in medium from either control or PTH treated UMR-106 cultures, suggesting that the decreased expression of ET receptors was not due to enhanced ET production and subsequent homologous desensitization. The downregulation of ET receptors in osteoblasts by PTH pretreatment may serve as a homeostatic mechanism in bone.  相似文献   

19.
20.
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24–72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites for AGEs, with both higher- and lower-affinity sites now being apparent. Medium-term (1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号