首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythropoietin has recently been shown to have effects beyond hematopoiesis such as prevention of neuronal and cardiac apoptosis secondary to ischemia. In this study, we evaluated the in vivo protective potential of erythropoietin in the reperfused rabbit heart following ventricular ischemia. We show that "preconditioning" with erythropoietin activates cell survival pathways in myocardial tissue in vivo and adult rabbit cardiac fibroblasts in vitro. These pathways, activated by erythropoietin in both whole hearts and cardiac fibroblasts, are also activated acutely by ischemia/reperfusion injury. Moreover, in vivo studies indicate that erythropoietin treatment either prior to or during ischemia significantly enhances cardiac function and recovery, including left ventricular contractility, following myocardial ischemia/reperfusion. Our data indicate that a contributing in vivo cellular mechanism of this protection is mitigation of myocardial cell apoptosis. This results in decreased infarct size as evidenced by area at risk studies following in vivo ischemia/reperfusion injury, translating into more viable myocardium and less ventricular dysfunction. Therefore, erythropoietin treatment may offer novel protection against ischemic heart disease and may act, at least in part, by direct action on cardiac fibroblasts and myocytes to alter survival and ventricular remodeling.  相似文献   

2.
Inactivation of erythropoietin leads to defects in cardiac morphogenesis.   总被引:35,自引:0,他引:35  
Erythropoietin is an essential growth factor that promotes survival, proliferation, and differentiation of mammalian erythroid progenitor cells. Erythropoietin(-/-) and erythropoietin receptor(-/-) mouse embryos die around embryonic day 13.5 due, in part, to failure of erythropoiesis in the fetal liver. In this study, we demonstrated a novel role of erythropoietin and erythropoietin receptor in cardiac development in vivo. We found that erythropoietin receptor is expressed in the developing murine heart in a temporal and cell type-specific manner: it is initially detected by embryonic day 10.5 and persists until day 14.5. Both erythropoietin(-/-) and erythropoietin receptor(-/-) embryos suffered from ventricular hypoplasia at day 12-13 of gestation. This defect appears to be independent from the general state of hypoxia and is likely due to a reduction in the number of proliferating cardiac myocytes in the ventricular myocardium. Cell proliferation assays revealed that erythropoietin acts as a mitogen in cells isolated from erythropoietin(-/-) mice, while it has no effect in hearts from erythropoietin receptor(-/-) animals. Erythropoietin(-/-) and erythropoietin receptor(-/-) embryos also suffered from epicardium detachment and abnormalities in the vascular network. Finally, through a series of chimeric analysis, we provided evidence that erythropoietin acts in a manner which is non-cell-autonomous. Our results elucidate a novel role of erythropoietin in cardiac morphogenesis and suggest a combination of anemia and cardiac failure as the cause of embryonic lethality in the erythropoietin(-/-) and erythropoietin receptor(-/-) animals.  相似文献   

3.
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target - calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.  相似文献   

4.
Erythropoietin mediates an evolutionarily conserved, ancient immune response that limits damage to the heart, the nervous system and other tissues following injury. New evidence indicates that erythropoietin specifically prevents the destruction of viable tissue surrounding the site of an injury by signalling through a non-haematopoietic receptor. Engineered derivatives of erythropoietin that have a high affinity for this receptor have been developed, and these show robust tissue-protective effects in diverse preclinical models without stimulating erythropoiesis. A recent successful proof-of-concept clinical trial that used erythropoietin to treat human patients who had suffered a stroke encourages the evaluation of both this cytokine and non-erythropoietic derivatives as therapeutic agents to limit tissue injury.  相似文献   

5.
Erythropoietin promotes the formation of granulation tissue when administered to soft tissue wounds and it was shown to be most effective under tissue hypoxia. However, the action of erythropoietin on the cellular level is not well understood. In order to get a better insight into these processes, an in vitro wound healing assay was applied. Two main players of soft tissue healing—fibroblasts and microvascular endothelial cells—were used as mono- and co-cultures, subsequently inflicting in vitro wounds. Cell migration, proliferation, the differentiation of fibroblasts to myofibroblasts, and the release of vascular endothelial cell growth factor A and angiogenin were quantified in response to hypoxia and erythropoietin (5 IU/ml). Erythropoietin supplementation did neither affect proliferation nor migration of endothelial cells and fibroblasts under normoxia. Under hypoxia, the reduced fibroblast migration was ameliorated by erythropoietin. This effect coincided with an attenuated release of vascular endothelial growth factor A, whereas angiogenin release was unaffected by erythropoietin. The in vitro model applied in this study may represent an adequate approximation to certain aspects of the in vivo status of soft tissue regeneration and the results might serve to interpret the in vivo efficiency of erythropoietin at the cellular level: Erythropoietin has different impacts on the cells in normoxia and hypoxia. Its positive influence on fibroblast migration during hypoxia seems to support the strategies of applying erythropoietin in those chronic wounds, which exhibit fibroblastic dysfunction although good vascularisation is present.  相似文献   

6.
Erythropoietin is a well-known erythroid differentiation and growth factor, but the mechanism of its action is not well understood. In this work, we have examined its mechanism of action on the erythropoietin-responsive murine erythroleukemia cells (TSA8). TSA8 cells become responsive to erythropoietin after induction with DMSO. Stimulatory effects on erythropoietin response are observed with the addition of compounds affecting the cAMP level such as forskolin, phosphodiesterase inhibitor and cholera toxin only in the presence of erythropoietin. cAMP analogues themselves show no stimulatory effect on TSA8 cells, nor does erythropoietin increase cAMP level in the cells. Thus, it is suggested that cAMP does not act as a direct second messenger for signal transduction through erythropoietin receptors, but as a stimulator of the erythropoietin receptor pathway and/or as a second messenger in combination with the receptor pathway. The mechanism for acquisition of responsiveness to growth and differentiation factors of progenitor cells is discussed.  相似文献   

7.
It has been systematized modem data on the early phase of ischemic preconditioning and cardiac resistance to pathogenic action of ischemia and reperfusion. It has been performed an analysis published works on the important role of alteration of myocardium energy metabolism in the development of adaptation resistance of the heart to ischemia. It has been shown that adenosine, bradykinin and opioid peptides and also signalling cascade involved phospholipase C and D, protein kinase C, tyrosine kinase and mitochondrial ATP-sensitive potassium channel play a key role in the mechanism of cardioprotective action of ischemic preconditioning.  相似文献   

8.
Role of reactive oxygen species in intestinal diseases.   总被引:5,自引:0,他引:5  
It is well known that reactive oxygen metabolites are generated during several pathologies, and that they are able to disturb many cellular processes and eventually lead to cellular injury. After intestinal ischemia, reactive oxygen species are produced when the ischemic tissue is reperfused. The enzyme xanthine oxidase is thought to play a key role in this process. As a result of this oxygen radical production, the permeability of the endothelium and the mucosa increases, allowing infiltration of inflammatory leukocytes into the ischemic area. Moreover, reactive oxygen species are also indirectly involved in leukocyte activation. In turn, these inflammatory cells respond with the production of oxygen radicals, which play an important role in the development of tissue injury. Thus, intestinal ischemia and reperfusion evokes an inflammatory response. Also during chronic intestinal inflammatory diseases, reactive oxygen metabolites are proposed to play an important role in the pathology. Scavenging of reactive oxygen species will thus be beneficial in these disorders.  相似文献   

9.
Evolving Concepts About the Role of Acidosis in Ischemic Neuropathology   总被引:10,自引:0,他引:10  
Abstract: Cerebral ischemia is one of the most common neurological insults. Many pathological events are undoubtedly triggered by ischemia, but only recently has it become accepted that ischemic cell injury arises from a complex interaction between multiple biochemical cascades. Tissue acidosis is a well established feature of ischemic brain tissue, but its role in ischemic neuropathology is still not fully understood. Within the last few years, new evidence has challenged the historically negative view of acidosis and suggests that it may play more of a beneficial role than previously thought. This review reintroduces the concept of acidosis to ischemic brain injury and presents some new perspectives on its neuroprotective potential.  相似文献   

10.
The accumulation of oxygen free radicals and activation of neutrophils are strongly implicated as pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. Heme oxygenase-1 (HO-1) has been reported to play a protective role in oxidative tissue injuries. In this study, the cardioprotective activity of tetramethylpyrazine (TMP), an active ingredient of Chinese medicinal herb Ligusticum wallichii Franchat, was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. Pretreatment with TMP (5 and 10 mg/kg, i.v.) before left coronary artery occlusion significantly suppressed the occurrence of ventricular fibrillation. After 45 min of ischemia and 1 h of reperfusion, TMP (5 and 10 mg/kg) caused a significant reduction in infarct size and induced HO-1 expression in ischemic myocardium. The HO inhibitor ZnPP (50 μg/rat) markedly reversed the anti-infarct action of TMP. Superoxide anion production in ischemic myocardium after 10 min reperfusion was inhibited by TMP. Furthermore, TMP (200 and 500 μM) significantly suppressed fMLP (800 nM)-activated human neutrophil migration and respiratory burst. In conclusion, TMP suppresses ischemia-induced ventricular arrhythmias and reduces the infarct size resulting from ischemia/reperfusion injury in vivo. This cardioprotective activity of TMP may be associated with its antioxidant activity via induction of HO-1 and with its capacity for neutrophil inhibition.  相似文献   

11.
Summary The precise role of eicosanoids in the development of myocardial injury during ischemia and reperfusion is still a matter of debate. Enhanced local production of these bioactive compounds appears to be a common response to tissue injury. Most likely, the cardiac tissue has the capacity to generate prostaglandins, thromboxanes as well as leukotrienes. Prostacyclin (PGI,) is the major eicosanoid produced by the jeopardized myocardium. In addition, at sites of tissue injury activation of platelets and infiltrating leukocytes results in the formation of considerable amounts of thromboxanes and leukotrienes. The production of eicosanoids requires prior release of arachidonic acid (AA) from phospholipids. Both ischemia and reperfusion are associated with a rise in the tissue level of AA. The absence of a proportional relationship between the tissue level of AA and the amounts of PGI, produced suggests that the sites of AA accumulation and PGI2 formation are different. It is conceivable that AA accumulation is mainly confined to myocytes, whereas the capacity to synthesize PGI, mainly resides in vascular cells. Both beneficial and detrimental effects of eicosanoids on cardiac tissue have been described. Prostaglandins act as vasodilators. Besides, some of the prostaglandins, especially PGI,, are thought to possess cyto-protective properties. Thromboxanes and leukotrienes may impede blood supply by increasing smooth muscle tone. Besides, leukotrienes augment vascular permeability. Experimental studies, designed to evaluate the effect of pharmacological agents, like PGI2-analogues and lipoxygenase and cyclo-oxygenase inhibitors, indicat that eicosanoids influence the outcome of myocardial injury. However, the delineation of the physiological significance of the locally produced eicosanoids is complicated by such factors as the wide variety of AA derivatives produced and the dose-dependency of their effects.  相似文献   

12.
目的 探讨短暂性前脑缺血鼠海马脑源性促红细胞生成素蛋白的表达变化,揭示脑缺血时中枢神经系统发生内源性脑保护的机制。方法 阻断沙土鼠双侧颈总动脉3.5min造成前脑缺血模型,再灌注1h,6h,12h,1d,3d,7d,应用免疫组织化学和免疫印迹法观察海马脑源性促红细胞生成素蛋白的表达变化。结果 脑缺血再灌注6h,可检测到脑源性促红细胞生成素的表达,再灌注12h,脑源性促红细胞生成素表达达到较高水平,以后随时间延长逐渐下调。结论 脑源性促红细胞生成素在脑缺血再灌注后的表达,可能是机体发生内源性脑保护的机制之一。  相似文献   

13.
AimsConsidering the implications that arose from several recent experimental studies using recombinant human erythropoietin in rodents, erythropoietin has been regarded as a pharmacological preconditioning agent. The purpose of the present study was to evaluate whether erythropoietin has a preconditioning effect against ischemia and reperfusion injury in the small intestine of the rat.Main methodsIntestinal ischemia was induced in male Wistar rats by clamping the superior mesenteric artery for 30 min, followed by reperfusion for 180 min. Recombinant human erythropoietin (1000 or 3000 U/kg) or vehicle was administered intraperitoneally 24 h prior to ischemia. After collection of ileal tissue, evaluation of damage was based on measurements of the accumulation of polymorphonuclear neutrophils by technetium-99m-labeled leukocyte uptake, content of malondialdehyde, reduced glutathione, contractile responses to agonists, and an evaluation of histopathological features in intestinal tissue.Key findingsTreatment with erythropoietin 24 h before ischemia significantly reduced the tissue content of malondialdehyde and increased that of reduced glutathione. Pretreatment also significantly suppressed leukocyte infiltration into the postischemic tissue, as evidenced by the lower content of myeloperoxidase and technetium-99m-labeled leukocytes. Physiological and histopathological improvements were also significant with the rHuEpo treatment.SignificanceResults of the present study indicate that rHuEpo is an effective preconditioning agent in ischemic injury of the small intestine. Protection provided by recombinant human erythropoietin is closely related to the inhibition of oxidative stress and leukocyte infiltration, which might be among the possible protective mechanisms of erythropoietin in intestinal ischemia and reperfusion.  相似文献   

14.
Structural changes in vessels under the influence of ischemia play an important role in the pathogenesis of many diseases, most important of which are stroke and myocardial infarction or myocardial insult. Over the years, information has been gathered, which implicate a role for ischemic vascular changes in the pathogenesis of crush-syndrome, atherosclerosis and other vascular diseases. When blood vessels are damaged they become unresponsive to a stimulus, which normally elicits vasodilatation and can lead to intraluminal thrombosis and ischemic events. The aim of this review is to explore the structural changes seen in vessels affected by ischemia reperfusion injury. With ischemia, the development of observable changes to vascular structure is multifactorial. One key factor is reperfusion ischemic injury. Moreover, the duration of the ischemic event is an important factor when determining both the prognosis and the type of morphological change that is observable in affected vessel walls. In this regard, the deleterious progression of blood flow impairment and its severity depends on the specific organ involved and the type of tissue affected. Further, there are regional differences within affected tissues and the degree of microvascular injury is well correlated with differences in the nature and severity of the ischemic event. Any method aimed at preventing and treating ischemic reperfusion injuries in vessels, based on these investigations, should likewise be able to decrease the early signs of brain, cerebrovascular and heart injury and preserve normal cellular architecture.  相似文献   

15.
The mechanism of action of erythropoietin   总被引:8,自引:0,他引:8  
  相似文献   

16.
脊髓缺血-再灌注损伤(SCII)是一种严重的神经系统损伤,是缺血脊髓组织恢复血液灌注后,脊髓组织的损伤反而加重,表现为其神经损害体征和形态学改变较前更加明显,其发生机制是多因素的综合结果,治疗措施也具有多样性,脊髓缺血后脊髓微血管结构及功能的破坏和脊髓水肿等是脊髓功能损害的主要诱因,至今为止,脊髓缺血再灌注损伤的防治主要有药物及物理治疗等方法,本文作者通过查阅中外文献对脊髓缺血再灌注损伤的特征、发生机制及防治措施作一综述,希望对研究脊髓缺血再灌注损伤防治的学者能有所帮助。  相似文献   

17.
促红细胞生成素是一种促进红系造血前体细胞增殖、分化的细胞因子,主要作用为促进红细胞增殖,应用于临床各种贫血治疗。随着研究进展,学者发现促红细胞生成素为一种多功能营养因子及神经保护因子,具有调节中枢神经系统发育、神经营养及神经保护作用。脑缺血性卒中实验研究显示,促红细胞生成素可有效改善中枢神经系统疾病所致的神经功能缺损,本文主要概述促红细胞生成素在脑缺血性卒中动物模型的研究进展,及其发挥神经保护作用所经由的分子机制。相信随着实验研究进展,其在脑缺血性卒中临床治疗方面将拥有更广阔的前景。  相似文献   

18.
Acute statin treatment has been reported to be critical in protecting the cardiac cells against ischemia/reperfusion injury by activating PI3K/Akt signal pathway. In vitro rat myocardial ischemia/reperfusion model, chronic statin treatment led to upregulation of phosphatase and tensin homolog (PTEN). This has been potentially indicated the correlation in PTEN and protective effect of statin on myocardium. In this current study, we evaluated the role of sodium orthovanadate a nonspecific inhibitor to PTEN and its correlation with atorvastatin on protecting myocardium against ischemia/reperfusion injury. We found a long-term statin treatment could increase the PTEN level, and this process was counteracted in the presence of sodium orthovanadate. However, the phosphotyrosine level was not affected by this statin. Besides, this process was mediated by Akt signaling since phosphorylated Akt level was altered by statin and sodium orthovanadate treatment. In a conclusion, this study showed a potential mechanism underlying PTEN-induced attenuation in long-term statin’s therapeutic effect, which provided the new insight into the synergic role of PTEN and atorvastatin in protecting cardiac cells against ischemia/reperfusion injury.  相似文献   

19.
为了分析全心缺血早期阶段对心脏电生理活动的影响,以及探讨诱发的室性心律失常机制,本研究考虑了缺血情况下高钾、酸液过多、局部缺氧的情况,结合详细的人类心室细胞生物物理上的动力学特征,开发了一个人体心室细胞和组织全心缺血模型.实验结果表明,全心缺血缩短了动作电位时程(action potential duration,APD),且减缓了兴奋的传导速率(conduction velocity,CV).同时,由于全心缺血降低了动作电位时程曲线(action potential duration restitution,APDR)斜率,且增大了有效不应期(effective refractory period,ERP),因此有利于维持折返波的稳定传导,使得室速不易转化为室颤.另一方面,尽管全心缺血导致了组织易感性的增加,但是由于其需要更长的异位刺激长度来保证折返波的形成,因此也在一定程度上降低了心律失常的发生概率.  相似文献   

20.
Pre-diabetic subjects with high insulin secretory capacity have double risk of cardiovascular disease compared with subjects who do not develop insulin-resistance. It is well established that the ability of the myocardium to increase its glycolytic ATP production plays a crucial role in determining cell survival under conditions of ischemia. Up to now, whether the pre-diabetic state reduces the tolerance of the heart to ischemia by affecting its ability to increase its energy production through glycolysis remains unknown. The aim of the present study was to assess whether insulin resistance affects the ability of the myocardium to increase glycolysis under ischemic conditions. Male Wistar rats were fed for 8 weeks a fructose-enriched (33%) diet to induce a pre-diabetic state. Hearts were isolated and subjected to ex-vivo low-flow (2%) ischemia for 30 min. The fructose diet increased sarcolemmal GLUT4 localisation in myocardial cells under basal conditions compared with controls. This effect was not accompanied by increased glucose utilisation. Ischemia induced the translocation of GLUT4 to the plasma membrane in controls but did not significantly modify the distribution of these transporters in pre-diabetic hearts. Glycolytic flux under ischemic conditions was significantly lower in fructose-fed rat hearts compared with controls. The reduction of glycolytic flux during ischemia in fructose-fed rat hearts was not due to metabolic inhibition downstream hexokinase II since no cardiac accumulation of glucose-6-phosphate was detected. In conclusion, our results suggest that the pre-diabetic state reduces the tolerance of the myocardium to ischemia by decreasing glycolytic flux adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号