首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.  相似文献   

2.
AIMS: The effects of temperature and concentration of dissolved CO(2) on the inactivation of Saccharomyces cerevisiae were investigated using a plug-flow system. METHODS AND RESULTS: Several combinations of pressure (4, 6, 8, 10 mega-Pa (MPa)) and temperature (30, 34, 36, 38 degrees C) were used. The D-values obtained were 0.14 min at 8 MPa and 38 degrees C, and 0.15 min at 10 MPa and 36 degrees C. The log D-values were related linearly to the treatment temperature and to the dissolved CO(2) concentration. The thermal resistance constant (zCO(2)(T)) was 9.5 degrees C in the media, including significant levels of CO(2), and the CO(2) resistance constant was z(temp.)(gamma)=7.2 gamma. CONCLUSION: This work has shown that inactivation followed first-order death kinetics, and the effects of temperature and CO(2) concentration were consistent through the critical temperature and pressure of CO(2). Therefore, it is feasible to estimate D-values at any temperature and any CO(2) concentration. SIGNIFICANCE AND IMPACT OF THE STUDY: Non-thermal inactivation of micro-organisms in acidic beverages could be realized by the present technique.  相似文献   

3.
Herein, we present the fabrication of well-defined micro-reservoirs and a simple strategy to immobilize biomolecules selectively inside the reservoirs. The micro-reservoirs are fabricated using a photocurable prepolymer, which enables the formation of concrete structures with high-fidelity, so that the reservoirs are spatially-segregated from each other by rigid physical barriers. For the directed binding of the protein, two steps are involved. First, poly(ethylene glycol) (PEG) is contact-printed on those areas where the protein binding is not desired, and next, protein binding is promoted where desired via carbodiimide chemistry. Fluorescein-tagged albumin is successfully immobilized inside the micro-reservoirs and microchannel arrays with high sensitivity, regardless of the sizes of the reservoirs and channels. The proposed system can be used for constructing multi-functional biosensors by immobilizing individual bioorganisms specifically in each micro-reservoir or microchannel.  相似文献   

4.
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme facilitates the release of sugar phosphate inhibitors from Rubisco catalytic sites thereby influencing carbamylation. T(1) progeny of transgenic Flaveria bidentis (a C(4) dicot) containing genetically reduced levels of Rubisco activase were used to explore the role of the enzyme in C(4) photosynthesis at high temperature. A range of T(1) progeny was screened at 25 degrees C and 40 degrees C for Rubisco activase content, photosynthetic rate, Rubisco carbamylation, and photosynthetic metabolite pools. The small isoform of F. bidentis activase was expressed and purified from E. coli and used to quantify leaf activase content. In wild-type F. bidentis, the activase monomer content was 10.6+/-0.8 micromol m(-2) (447+/-36 mg m(-2)) compared to a Rubisco site content of 14.2+/-0.8 micromol m(-2). CO(2) assimilation rates and Rubisco carbamylation declined at both 25 degrees C and 40 degrees C when the Rubisco activase content dropped below 3 mumol m(-2) (125 mg m(-2)), with the status of Rubisco carbamylation at an activase content greater than this threshold value being 44+/-5% at 40 degrees C compared to 81+/-2% at 25 degrees C. When the CO(2) assimilation rate was reduced, ribulose-1,5-bisphosphate and aspartate pools increased whereas 3-phosphoglycerate and phosphoenol pyruvate levels decreased, demonstrating an interconnectivity of the C(3) and C(4) metabolites pools. It is concluded that during short-term treatment at 40 degrees C, Rubisco activase content is not the only factor modulating Rubisco carbamylation during C(4) photosynthesis.  相似文献   

5.
Cashew nut shell liquid (CNSL) represents the largest readily available bioresource of alkenyl phenolic compounds. In this work, separation of CNSL from the pericarp of the cashew nut with supercritical carbon dioxide was studied. In the initial extractions with CO(2) at 40-60 degrees C and at pressures from 14.7 to 29.4 MPa, low yields were obtained. However, when the extractions were performed with one or more intermediate depressurization steps, the yield of CNSL increased to as high as 94%. Most of the oil did not separate from the shell during the depressurization step, but was obtained during the subsequent repressurization. The CNSL extract had a clear light brownish pink color and exhibited no evidence of polymerization or degradation. The pressure profile extraction method proposed in this work increases the possible CNSL extraction yields and greatly reduces the amount of CO(2) required for CNSL separation.  相似文献   

6.
Beta-galactosidase (beta-gal) is shown to be a versatile new reporter enzyme in both photometric and electrochemical enzyme-multiplied assay techniques (EMATs). The well-known beta-gal substrate analog, o-nitrophenyl beta-d-galactopyranoside, yields the visibly colored, o-nitrophenol product upon hydrolysis, whereas the substrate, p-aminophenyl beta-D-galactopyranoside, gives rise to an electrooxidizable product, p-aminophenol. These beta-gal substrates made possible the demonstration of both photometric and electrochemical signal transduction schemes for beta-gal-based EMAT detection of estradiol (as the estradiol-bovine serum albumin (E-BSA) conjugate). The EMAT system is composed of the reporter enzyme, beta-gal, with covalently attached estradiol, and estrogen antibody, which inhibits enzyme activity of the beta-gal-estradiol conjugate up to approximately 75%. Reporter enzyme inhibition is relieved significantly by addition of < or =2 ng/mL of estradiol (as E-BSA), which competes for binding with the antibody. Thus, the presence of analyte (E-BSA) is reported by the enzyme (beta-gal), which amplifies the ligand-protein dissociation event by turning over its substrate repeatedly. The electrochemical version of EMAT, based on amperometric detection of p-aminophenol, is responsive to added estradiol within minutes. These results show that beta-gal may serve as a useful alternative to glucose-6-phosphate dehydrogenase, which currently is used as reporter enzyme in commercially available EMAT systems.  相似文献   

7.
CO(2) release patterns of three drywood termite species were investigated using flow-through respirometry techniques. Eight hours of real-time CO(2) release data were recorded for pseudergates of Cryptotermes cavifrons Banks, Incisitermes minor (Hagen), and I. tabogae (Snyder) at 20-40 degrees C. Cyclic release of CO(2) was observed in 20-90% of C. cavifrons, 70-100% of I. tabogae, and 87-100% of I. minor pseudergates. Variability of the recordings (calculated as the coefficient of variability or CV) was used to estimate the level of cycling in each recording. CV ranged from 14.53+/-2.57 (40 degrees C) to 32.33+/-1.12% (30 degrees C) in C. cavifrons, 20.24+/-2.44 (35 degrees C) to 67.3+/-10.3% (20 degrees C) in I. minor, and 15.9+/-1.46 (35 degrees C) to 34.15+/-6.18% (20 degrees C) in I. tabogae. The relationship between temperature and CV for each species was modeled using non-linear regression. CV of both Incisitermes spp. decreased exponentially with temperature, while C. cavifrons CV followed a Gaussian model, indicating an optimal cycling temperature of approximately 30 degrees C. Mean V.CO(2) values were determined for each species as a function of temperature, and ranged from 0.1 ml CO(2) g(-1) h(-1) (I. minor at 20 degrees C) to 0.8 ml CO(2) g(-1) h(-1) (C. cavifrons at 40 degrees C). For all three species, V.CO(2) significantly increased linearly with temperature. Colinearity tests indicated that different models described the V.CO(2) relationship with temperature for both genera. Q(10) values for V.CO(2) over the range of 20-40 degrees C were 1.92 for I. minor, 1.66 for I. tabogae, and 1.62 for C. cavifrons pseudergates.  相似文献   

8.
In this study for the first time the effect of high-pressure CO2 on the coacervation of alpha-elastin was investigated using analytical techniques including light spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging and circular dichroism (CD) spectroscopy. The coacervation behavior of alpha-elastin, a protein biopolymer, was determined at temperatures below 40 degrees C and pressures lower than 180 bar. At these conditions elevated pressures did not disrupt the ability of alpha-elastin to coacervate. It was feasible to monitor the presence of amide I, II, and III bands for alpha-elastin at high-pressure CO2 using ATR-FTIR imaging. At a constant temperature the peak absorption was substantially enhanced by increasing the pressure of the system. CD analysis demonstrated the preservation of secondary structure attributes of alpha-elastin exposed to dense gas CO2 at the pressure range investigated in this study. The lower critical solution temperature of alpha-elastin was dramatically decreased from 37 to 16 degrees C when the CO2 pressure increased from 1 to 50 bar, without a significant change after that. Carbon dioxide at high pressures also impeded the reversible coacervation of alpha-elastin solution. These effects were predominantly associated with the lowered pH of the aqueous solution and maybe the interaction between CO2 and hydrophobic domains of alpha-elastin.  相似文献   

9.
Hydroxylamine oxidoreductase (HAO) of the ammonia-oxidizing bacterium Nitrosomonas catalyzes the oxidation: NH2OH + H2O----HNO2 + 2e- + 2 H+. The heme-like chromophore P460 is part of a site which binds substrate, extracts electrons and then passes them to the many c hemes of the enzyme. Reduction of the c hemes by hydroxylamine is biphasic with apparent first-order rate constants k1 and k2. CO binds to ferrous P460 with apparent first-order rate constants, k1,CO. In this work we have measured the binding of CO to ferrous P460 of hydroxylamine oxidoreductase and the reduction by substrate of some of the 24 c hemes of the ferric enzyme. These reactions have been studied in water and 40% ethylene glycol, at temperatures ranging from -15 degrees C to 20.7 degrees C and at hydrostatic pressures ranging over 0.1-80 MPa. From the measurements, thermodynamic parameters delta V+ (activation volume), delta G+, delta H+, and delta S+ have been calculated. CO binding. Binding of CO to ferrous P460 was similar to the binding of CO to ferrous horseradish peroxidase. The change of solvent had only a limited effect on delta V+ (-30 ml.mol-1), delta G+, delta H+ or delta S+ and did not cause an inflection in the Arrhenius plot or downward displacement of the linear relationship between ln k1,CO and P at a critical temperature. Binding was exothermic at high temperatures. The response of the binding of CO to solvent, temperature and pressure suggested that the CO binding site had little access to solvent and was not susceptible to change in protein conformation. Fast phase of reduction of c hemes. Changing the solvent from water to 40% ethylene glycol resulted in a decrease from 90% to 50% in the relative number of c hemes reduced during the fast phase, an increase in activation volume from -3.6 ml.mol-1 to 57 ml.mol-1 and changes in other thermodynamic parameters. The activation volume increased with decreasing temperature. The Arrhenius plot had a downward inflection at about 0 degrees C and, in water or ethylene glycol, the linear dependence of ln k1 on P was displaced downwards as the temperature changed from 3.5 degrees C to -15 degrees C. Slow phase of reduction of c hemes. Changing the solvent from water to 40% ethylene glycol resulted in an increase in the relative number of c hemes reduced during the slow phase from 10% to 50%. The activation volume, which was not measurable in water because of the low absorbance change, was -30 ml.mol-1 in ethylene glycol. The activation volume increased with increasing temperature.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The thermal stability and activity of enzymes in supercritical carbon dioxide (SC CO(2)) and near-critical propane were studied at a pressure of 300 bar in the temperature range 20-90 degrees C. Proteinase from Carica papaya was incubated in microaqueous SC CO(2) at atmospheric pressure in a nonaqueous system. Lipase stability in an aqueous medium at atmospheric pressure and in SC CO(2) as well as near-critical propane at 100 bar and 40 degrees C was studied. In order to investigate the impact of solvent on lipases, these were chosen from different sources: Pseudomonas fluorescences, Rhizpous javanicus, Rhizopus niveus and porcine pancreas. On the basis of our previous study on lipase activities in dense gases, a high-pressure continuous flat-shape membrane reactor was designed. The hydrolysis of sunflower oil in SC CO(2) was performed as a model reaction in this reactor. The reaction was catalyzed by the lipase preparation Lipolase 100T and was performed at 50 degrees C and 200 bar.  相似文献   

11.
The present work focuses on the thermodynamic interpretation of the lauryl oleate biosynthesis in high-pressure carbon dioxide. Lipase-catalyzed lauryl oleate production by oleic acid esterification with 1-dodecanol over immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) was successfully performed in a sapphire window batch stirred tank reactor (BSTR) using dense CO(2) as reaction medium. The experiments were planned to elucidate the pressure effect on the reaction performance. With increasing the pressure up to 10 MPa, the catalytic efficiency of the studied enzyme improved rising up to a maximum and decreased at higher pressure values. Kinetic observations, exhibiting that dense CO(2) expanded reaction mixture in subcritical conditions led to higher performance than when diluted in a single supercritical phase, were elucidated by phase-equilibrium arguments. The experimental results were justified with emphasis on thermodynamic interpretation of the studied system. Particularly, the different reaction performances obtained were related to the position of the operating point with respect to the location of liquid-vapor phase boundaries of the reactant fatty acid/alcohol/CO(2) ternary system. The outlook for exploitation of CO(2) expanded phase at lower pressure compared to supercritical phase, with heterogeneous system in which the solid catalyst particles are exposed to dense CO(2) expanded reaction mixture, in developing new biotransformation schemes is promising.  相似文献   

12.
Sterilizing Bacillus pumilus spores using supercritical carbon dioxide   总被引:3,自引:0,他引:3  
Supercritical carbon dioxide (SC CO(2)) has been evaluated as a new sterilization technology. Results are presented on killing of B. pumilus spores using SC CO(2) containing trace levels of additives. Complete killing was achieved with 200 part per million (ppm) hydrogen peroxide in SC CO(2) at 60 degrees C, 27.5 MPa. Addition of water to SC CO(2) resulted in greater than three-log killing, but this is insufficient to claim sterilization. Neither ethanol nor isopropanol when added to SC CO(2) affected killing.  相似文献   

13.
The effects of pressurized CO2 on the survival of Escherichia coli and the mechanism of cell inactivation were studied. Bacterial cultures were inoculated in nutrient broth and incubated at 30 degrees C for 18 h. Exposure of the cells to CO2 under pressures ranging from 2.5 to 25 MPa and at temperatures between 8 and 40 degrees C was performed in a double-walled reactor with a 1 L capacity. The effect of the treatment on the cells was evaluated by plating and by transmission and scanning electron microscopy observation. Vapour CO2 generated a bacteriostatic effect. In liquid or supercritical state, CO2 provided a bactericidal effect. The bactericidal effect increased with pressure and temperature. The mechanism of cell inactivation by liquid CO2 involved two stages. First, cell stress caused by the CO2 penetration provoked cell wall collapse and cellular content precipitation. Second, the cell death caused by supercritical extraction of intracellular substances and cell envelope perforation resulted in leaking of intracellular constituents. In supercritical conditions, the cell inactivation process had one single phase: cellular death.  相似文献   

14.
The objective of this study was to compare high pressure resistance of Listeria monocytogenes strains at 25 degrees C and 50 degrees C at 350 MPa and to use high pressure (250 MPa and 350 MPa) at 30 degrees C and 40 degrees C for the inactivation of the relatively most pressure resistant strain inoculated in pasteurized apple, apricot, cherry and orange juices. L. monocytogenes CA was found to be the relatively most pressure resistant strain and increasing pressurization from 250 MPa to 350 MPa at 30 degrees C had an additional three to four log cycle reduction in viability, still leaving viable cells after 5 min. When 350 MPa at 40 degrees C for 5 min was applied more than eight log cycle reduction in cell population of all fruit juices was achieved. This study demonstrated that low temperature (40 degrees C) high pressure (350 MPa) treatment has the potential to inactivate relatively pressure resistant L. monocytogenes strains inoculated in different fruit juices within 5 min.  相似文献   

15.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

16.
A new and one-step method has been developed for the fabrication of superoxide dismutase (SOD) based biosensor. This method was used to form a silica sol-gel (SG) thin film and to immobilize SOD and gold nanoparticles (GNPs) in silica SG network for the fabrication of biosensor. The immobilized superoxide dismutase realized direct electron transfer between the enzyme and electrode surface, and the rate constants of the electrochemical process (ks) of SOD was markedly enhanced by GNPs. The electrochemical performance and influencing factors of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response to superoxide anion. The calibration range of superoxide anion was from 0.05 to 0.4 micromol L(-1). The proposed method exhibited the benefits of the advantages of self-assembly, nanoparticles and SG techniques. The fabrication of the SOD-modified electrode was easy and simple. The biosensor exhibited high sensitivity and long-term stability.  相似文献   

17.
CO(2) transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (g(m)), is finite. Therefore, it will limit photosynthesis when CO(2) is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of g(m). The process dominating g(m) is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO(2) in water have all been suggested. The response of g(m) to temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q(10)) of approximately 2.2 for g(m), suggesting control by a protein-facilitated process because the Q(10) for diffusion of CO(2) in water is about 1.25. Further, g(m) values are maximal at 35 degrees C to 37.5 degrees C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of g(m) to calculate CO(2) at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10 degrees C to 40 degrees C. Using these parameters, we determined the limitation imposed on photosynthesis by g(m). Despite an exponential rise with temperature, g(m) does not keep pace with increased capacity for CO(2) uptake at the site of Rubisco. The fraction of the total limitations to CO(2) uptake within the leaf attributable to g(m) rose from 0.10 at 10 degrees C to 0.22 at 40 degrees C. This shows that transfer of CO(2) from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature.  相似文献   

18.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

19.
C(4) plants are rare in the cool climates characteristic of high latitudes and elevations, but the reasons for this are unclear. We tested the hypothesis that CO(2) fixation by Rubisco is the rate-limiting step during C(4) photosynthesis at cool temperatures. We measured photosynthesis and chlorophyll fluorescence from 6 degrees C to 40 degrees C, and in vitro Rubisco and phosphoenolpyruvate carboxylase activity from 0 degrees C to 42 degrees C, in Flaveria bidentis modified by an antisense construct (targeted to the nuclear-encoded small subunit of Rubisco, anti-RbcS) to have 49% and 32% of the wild-type Rubisco content. Photosynthesis was reduced at all temperatures in the anti-Rbcs plants, but the thermal optimum for photosynthesis (35 degrees C) did not differ. The in vitro turnover rate (kcat) of fully carbamylated Rubisco was 3.8 mol mol(-)(1) s(-)(1) at 24 degrees C, regardless of genotype. The in vitro kcat (Rubisco Vcmax per catalytic site) and in vivo kcat (gross photosynthesis per Rubisco catalytic site) were the same below 20 degrees C, but at warmer temperatures, the in vitro capacity of the enzyme exceeded the realized rate of photosynthesis. The quantum requirement of CO(2) assimilation increased below 25 degrees C in all genotypes, suggesting greater leakage of CO(2) from the bundle sheath. The Rubisco flux control coefficient was 0.68 at the thermal optimum and increased to 0.99 at 6 degrees C. Our results thus demonstrate that Rubisco capacity is a principle control over the rate of C(4) photosynthesis at low temperatures. On the basis of these results, we propose that the lack of C(4) success in cool climates reflects a constraint imposed by having less Rubisco than their C(3) competitors.  相似文献   

20.
Forster's mechanism of radiationless energy transfer has been used to estimate average distance between tryptophan residues and pyridoxal 5'-phosphate bound at the active site of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase. This distance was found to depend on the activity of the enzyme and was 29 A for a freshly purified enzyme (activity 1.7 mu moles CO2 fixed/min/mg protein) and 37 A for a 6 week old enzyme stored at 4 degrees C (activity 0.07 mu moles CO2 fixed/min/mg protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号