首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
V N Kasho  M Yoshida  P D Boyer 《Biochemistry》1989,28(17):6949-6954
The ATPase from the ATP synthase of the thermophilic bacterium PS3 (TF1), unlike F1 ATPase from other sources, does not retain bound ATP, ADP, and Pi at a catalytic site under conditions for single-site catalysis [Yohda, M., & Yoshida, M. (1987) J. Biochem. 102, 875-883]. This raised a question as to whether catalysis by TF1 involved alternating participation of catalytic sites. The possibility remained, however, that there might be transient but catalytically significant retention of bound reactants at catalytic sites when the medium ATP concentration was relatively low. To test for this, the extent of water oxygen incorporation into Pi formed by ATP hydrolysis was measured at various ATP concentrations. During ATP hydrolysis at both 45 and 60 degrees C, the extent of water oxygen incorporation into the Pi formed increased markedly as the ATP concentration was lowered to the micromolar range, with greater modulation observed at 60 degrees C. Most of the product Pi formed arose by a single catalytic pathway, but measurable amounts of Pi were formed by a pathway with high oxygen exchange. This may result from the presence of some poorly active enzyme. The results are consistent with sequential participation of three catalytic sites on the TF1 as predicted by the binding change mechanism.  相似文献   

2.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

3.
Citreoviridin is a toxic metabolite from fungus that has been shown to be an inhibitor of mitochondrial F1-ATPases. Studies of citreoviridin, however, have been compromised by the light-dependent isomerization that it undergoes. The isomerization is a potential source of extensive variability in the studies, if citreoviridin and isocitreoviridin have different kinetic effects and binding properties. Both citreoviridin and isocitreoviridin recently have been purified and have been shown to be stable in the dark. Using the purified isomers, the effects of both citreoviridin and isocitreoviridin on soluble and membrane-bound beef heart mitochondrial F1-ATPase activity were investigated. It was found that citreoviridin was an uncompetitive inhibitor of ATP hydrolysis, and a non-competitive inhibitor of ITP hydrolysis catalyzed by soluble F1-ATPase. Isocitreoviridin had no effect on the hydrolysis of either of the triphosphates catalyzed by soluble F1-ATPase. The inhibition constant, Ki for citreoviridin was determined as 4.5 microM for ATP hydrolysis. The inhibition constants Kii and Kis for ITP hydrolysis were determined as 4.3 and 1.03 microM, respectively. Citreoviridin was an uncompetitive inhibitor of ATP hydrolysis and a noncompetitive inhibitor of ATP synthesis catalyzed by membrane-bound F1-ATPase. The inhibition constant, Ki, for ATP hydrolysis was around 4 microM. For ATP synthesis the inhibition constants were determined as 0.12 and 0.16 microM for Kis and Kii, respectively, when ADP concentration was kept saturating. Isocitreoviridin had no effect on either activity of the membrane-bound enzyme.  相似文献   

4.
Salivary apyrase of Rhodnius prolixus. Kinetics and purification.   总被引:2,自引:0,他引:2       下载免费PDF全文
The salivary apyrase activity of the blood-sucking bug Rhodnius prolixus was found to reside in a true apyrase (ATP diphosphohydrolase, EC 3.6.1.5) enzyme. The crude saliva was devoid of 5'-nucleotidase, inorganic pyrophosphatase, phosphatase and adenylate kinase activities. ATP hydrolysis proceeded directly to AMP and Pi without significant accumulation of ADP. Km values for ATP and ADP hydrolysis were 229 and 291 microM respectively. Ki values for ATP and ADP inhibition of ADP and ATP hydrolysis were not different from the Km values, and these experiments indicated competitive inhibition. Activities were purified 126-fold by combined gel filtration and ion-exchange chromatography procedures with a yield of 63%. The purified enzyme displayed specific activities of 580 and 335 mumol of Pi released/min per mg of protein for ATP and ADP hydrolysis respectively. The action of the purified enzyme on several phosphate esters indicates that Rhodnius apyrase is a non-specific nucleosidetriphosphate diphosphohydrolase.  相似文献   

5.
Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [3H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [3H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [3H]ADP in 30 min with a Kd of 30 microM. [3H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [3H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [3H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits. It has also been demonstrated that enzyme-bound ATP is formed when the TF0.F1 complex containing bound ADP was incubated with Pi, Mg2+, and 50% dimethyl sulfoxide.  相似文献   

6.
The photoaffinity analog of ATP, 3'-O-(4-benzoyl) benzoyl ATP (BzATP), was used to covalently modify the catalytic sites on the beef heart mitochondrial F1-ATPase. In the absence of actinic illumination, BzATP was a slow substrate for the enzyme (Vmax = 0.19 mumol min-1 mg-1; kcat/Km = 2.2 X 10(6) M-1s-1) and behaved as a classical competitive inhibitor versus ATP (Ki = 0.85 microM). Under photolytic conditions, BzATP inactivated F1 with pseudo first-order kinetics, and the photoinactivation reaction showed rate saturation suggesting specific, reversible binding of BzATP to F1 prior to covalent bond formation. ATP protected against F1 photoinactivation (Kprotect = 0.3 microM) and partially covalently modified F1 yielded the same Km for ATP as unmodified enzyme. These results strongly suggested that BzATP was bound to catalytic sites on the enzyme. In the absence of photolysis, BzATP saturated two binding sites on the F1 (KD = 1.6 microM), and under photolytic conditions, 1 mol of BzATP was shown to be covalently liganded to the beta subunit of the enzyme coincident with 100% loss in ATPase activity. Previous studies with the mitochondrial F1-ATPase have suggested a mechanism involving catalytic cooperativity during ATP hydrolysis. Our demonstration of a molar stoichiometry of 1 for photoinactivation is in accord with this mechanism. It is suggested that either F1 is unable to hydrolyze covalently bound BzATP, or that subsequent to hydrolysis, the BzADP product can not be released from the catalytic site. It is therefore inferred that F1 hydrolytic activity requires cooperativity between multiple, viable catalytic sites and that covalent modification of a single catalytic site is sufficient for complete enzyme inactivation.  相似文献   

7.
1. The lag time before maximum velocity of ATP hydrolysis is reached upon mixing ATP with F1 is much greater than can be explained by a simple Michaelis-Menten mechanism, and must be due to an activation reaction. The lag time is dependent on the concentration of MgATP (half-maximal at 30 microM) and is equal to 30 ms at infinite MgATP concentration. The initial rate of hydrolysis by nucleotide-depleted F1 is much greater than with normal F1. It is tentatively suggested that the activation reaction with normal preparations is due to replacement of firmly bound ADP by MaATP. 2. After the initial time lag, the reaction follows very closely first-order kinetics provided that the concentration of MgATP is much less than the Km and the reaction is completed within 2 s. This is not expected if the dissociation constant of the enzyme-MgADP complex, an intermediate in the enzymic reaction, is much lower than the Km as has been reported in the literature. The value of V/Km, calculated from the exponential decay, is very close to that calculated from independent measurements of V and Km. 3. The low values for Ki(ADP) reported in the literature were found to be due to a slow (in the order of seconds) formation of an inhibited MgADP-enzyme complex. Dissipation of this inhibited complex by ATP requires seconds. The dissociation constant of the MgADP-enzyme complex that is an intermediate in the enzyme reaction was found to be 150 microM. 4. ADP but not ATP becomes firmly bound to nucleotide-depleted F1 in the absence of Mg2+.  相似文献   

8.
Preincubation of F1-ATPase with ADP and Mg2+ leads to ADP binding at regulatory site inducing a hysteretic inhibition of ATP hydrolysis, i.e., an inhibition that slowly develops after Mg-ATP addition (Di Pietro, A., Penin, F., Godinot, C. and Gautheron, D.C. (1980) Biochemistry 19, 5671-5678). It is shown here that inorganic phosphate (Pi) together with ADP during preincubation abolishes the time-dependence of the inhibition after the addition of the substrate Mg-ATP. This preincubation in the presence of both Pi and ADP slowly leads to a conformation of the enzyme immediately inhibited after the addition of the substrate Mg-ATP. The Pi effect is half-maximal at 35 microM and pH 6.6, whereas a limited effect is induced at pH 8.0. The preincubation of F1-ATPase with Pi and ADP must last long enough (t1/2 = 5 min). The effects can be correlated to the amount of Pi bound to the enzyme, 1 mol Pi per mol (apparent KD of 33 microM) at saturation. Pi neither modifies the ADP binding nor the final level of the concomitant inhibition. When Pi is not present in the preincubation, the final stable rate of ADP-induced hysteretic inhibition is always reached when a near-constant amount of Pi has been generated during Mg-ATP hydrolysis. Kinetic experiments indicate that preincubation with ADP and Pi decreases both Vmax and Km which would favor a conformational change of the enzyme. Taking into account the Pi effects, a more precise model of hysteretic inhibition is proposed. The natural protein inhibitor IF1 efficiently prevents the binding of Pi produced by ATP hydrolysis indicating that the hysteretic inhibition and the IF1-dependent inhibition obey different mechanisms.  相似文献   

9.
Two interconvertible kinetic modes are described for ATP synthesis by bovine heart submitochondrial particles. One mode is characterized by low apparent Km values for ADP (6-10 microM) and Pi (less than or equal to 0.25 mM), and a limited capacity for ATP synthesis (apparent Vmax approximately 500 nmol ATP.min-1.mg of protein-1). ATP synthesis occurs predominantly in this mode when the coupled activity of the respiratory chain relative to the number of functional ATP synthase complexes is low. The second kinetic mode is characterized by high apparent Km values for ADP (50-100 microM) and Pi (approximately 2.0 mM) and a high capacity for ATP synthesis (Vmax greater than 1800 nmol ATP.min-1.mg of protein-1). This mode of ATP synthesis predominates when the available free energy relative to the number of functional ATP synthase units is high. These results suggest that energy pressure in mitochondria might regulate ATP synthesis such that at low levels of energy the ATP synthase operates economically (low substrate Km values, low turnover capacity for ATP synthesis), while at high levels of energy these kinetic constraints are relaxed (high substrate Km values, high turnover capacity for ATP synthesis). The implications of these findings are discussed in relation to the cooperative-type kinetics of ATP synthesis and hydrolysis, the differential effects of a number of F0-F1 inhibitors on the rates of ATP synthesis and hydrolysis, and the controversy as to whether protonic energy in mitochondria is localized or delocalized.  相似文献   

10.
The single-stranded, DNA-dependent ATPase activity of purified recA protein was found to be inhibited competitively by ribose-modified analogs of ATP, 3'-O-anthraniloyl-ATP (Ant-ATP), and 3'-O-(N-methylanthraniloyl)-ATP (Mant-ATP). The Ki values for Ant-ATP and Mant-ATP were around 7 and 3 microM at pH 7.5, respectively. The inhibitions by these analogs were much stronger than that by ADP, which is also a competitive inhibitor for the ATPase activity of the recA protein. The Ki value for ADP is 76 microM. Ant-ATP and Mant-ATP reduced the Hill coefficient for ATP hydrolysis and thus contributed to the cooperative effect of ATP.  相似文献   

11.
3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.  相似文献   

12.
The F1 and F1-inhibitor-protein complex synthesized tightly bound ATP from ADP and Pi when the organic solvents dimethylsulfoxide (20-50% v/v), ethylene glycol (20-60% v/v) or poly(ethylene glycol) 4000 and 8000 (30-50% w/v) were included in the assay media. There was no synthesis of tightly bound ATP in the absence of organic solvents. In the presence of 50% dimethylsulfoxide, maximal synthesis of ATP was obtained at pH values between 6.5 and 7.7. In both F1 and F1-inhibitor-protein there was no synthesis of ATP in the absence of MgCl2. The rate of ATP synthesis became faster as the MgCl2 concentration in the medium was raised from 0.1-10 mM. The Km for Pi of F1 was in the range of 0.8-1.5 mM. The Km for Pi of the F1-inhibitor-protein was much higher than that of F1 and could not be measured. In the presence of 10 mM MgCl2 and 2 mM Pi, the rate constants of ATP synthesis by F1 and F1-inhibitor-protein were 5.2-10.4 h-1 and 3.5-5.9 h-1 respectively. For both enzymes the rate constant of ATP hydrolysis was 0.69 h-1. The tightly bound ATP of F1 and F1-inhibitor-protein were hydrolyzed at a much slower rate when either the Pi concentration or the MgCl2 concentration was suddenly decreased. Both in presence and absence of Mg2+, 40-60% of the radioactive tightly bound ATP synthesized by F1 was hydrolyzed when non-radioactive ATP was added to the assay medium. This was not observed when F1-inhibitor-protein was used.  相似文献   

13.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

14.
Using manual rapid-mixing procedures in which small, equal volumes of Escherichia coli F1-ATPase and [gamma-32P]ATP were combined at final concentrations of 2 and 0.2 microM, respectively (i.e., unisite catalysis conditions), it was shown that greater than or equal to 66% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi equal to 0.4 and the rate of dissociation of bound [32P]Pi equal to 3.5 x 10(-3) s-1, similar to previously published values. Azide is known to inhibit cooperative but not unisite catalysis in F1-ATPase [Noumi, T., Maeda, M., & Futai, M. (1987) FEBS Lett. 213, 381-384]. In the presence of 1 mM sodium azide, 99% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi being 0.57. These experiments demonstrated that when conditions are used which minimize cooperative catalysis, most or all of the F1 molecules bind substoichiometric ATP tightly, hydrolyze it with retention of bound ATP and Pi, and release the products slowly. The data justify the validity of previously published rate constants for unisite catalysis. Unisite catalysis in E. coli F1-ATPase was studied at varied pH from 5.5 to 9.5 using buffers devoid of phosphate. Rate constants for ATP binding/release, ATP hydrolysis/resynthesis, Pi release, and ADP binding/release were measured; the Pi binding rate constant was inferred from the delta G for ATP hydrolysis. ATP binding was pH-independent; ATP release accelerated at higher pH. The highest KaATP (4.4 x 10(9) M-1) was seen at physiological pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
(1) Dimethyl sulfoxide (DMSO) markedly inhibited the Vmax of multisite ATPase activity in Escherichia coli F1-ATPase at concentrations greater than 30% (v/v). Vmax/KM was reduced by 2 orders of magnitude in 40% (v/v) DMSO at pH 7.5, primarily due to reduction of Vmax. The inhibition was rapidly reversed on dilution into aqueous buffer. (2) KdATP at the first, high-affinity catalytic site was increased 1500-fold from 2.3 x 10(-10) to 3.4 x 10(-7) M in 40% DMSO at pH 7.5, whereas KdADP was increased 3.2-fold from 8.8 to 28 microM. This suggests that the high-affinity catalytic site presents a hydrophobic environment for ATP binding in native enzyme, that there is a significant difference between the conformation for ADP binding as opposed to ATP binding, and that the ADP-binding conformation is more hydrophilic. (3) Rate constants for hydrolysis and resynthesis of bound ATP in unisite catalysis were slowed approximately 10-fold by 40% DMSO; however, the equilibrium between bound Pi/bound ATP was little changed. The reduction in catalysis rates may well be related to the large increase in KdATP (less constrained site). (4) Significant Pi binding to E. coli F1 could not be detected either in 40% DMSO or in aqueous buffer using a centrifuge column procedure. (5) We infer, on the basis of the measured constants KaATP, K2 (hydrolysis/resynthesis of ATP), k+3 (Pi release), and KdADP and from estimates of k-3 (Pi binding) that delta G for ATP hydrolysis in 40% DMSO-containing pH 7.5 buffer is between -9.2 and -16.8 kJ/mol.  相似文献   

16.
J A Pérez  S J Ferguson 《Biochemistry》1990,29(46):10503-10518
(1) The rate of ATP synthesis during NADH-driven aerobic respiration has been measured in plasma membrane vesicles from Paracoccus denitrificans as a function of the concentration of the substrates, ADP and inorganic phosphate (Pi). In both cases, the response of the reaction to changes in the degree of saturation of the F0F1-ATPase generated a perfect Micaelian dependence which allowed the determination of the corresponding Michaelis constants, KmADP and KmPi. (2) These kinetic parameters possess a real mechanistic significance, as concluded from the partial reduction of the rate of phosphorylation by the energy-transfer inhibitor venturicidin and the consequent analysis of the results within the framework of the theory of metabolic control. (3) The same membrane vesicles, which catalyze very high rates of ATP synthesis, have been shown to support much lower rates of the exchange ATP in equilibrium Pi and negligible rates of ATP hydrolysis. Under similar conditions, the preparations are also capable of generating phosphorylation potentials, delta Gp, of 60-61 kJ.mol-1. (4) These properties have allowed analysis of the synthetic reaction in the presence of significant concentrations of the product, ATP, using integrated forms of the Michaelis-Menten rate equations. (5) It has been shown that ATP produces pure competitive product inhibition of the forward reaction with a value of KiATP = 16 +/- 1 microM, thus indicating that the affinity of the nucleotide for the active site(s) of the F0F1-ATPase, during net ATP synthesis, is significantly higher than previously thought. (6) The order of binding of the substrates, ADP and Pi, to the active site(s) has been determined as random. (7) At very low concentrations of ADP, a second and much smaller Michaelis constant for this substrate has been identified, with an estimated value of KmADP approximately equal to 50 nM, associated with a maximal rate of only 2% of that measured at a higher range of concentrations. (8) The results obtained are discussed in relation to the presence of two or three equivalent catalytic sites operating in the cooperative manner explicitly described by the binding change mechanism.  相似文献   

17.
Purified TF1 (F1-ATPase from a thermophilic bacterium PS3) synthesizes enzyme-bound ATP from medium Pi and enzyme-bound ADP in the presence of 50% dimethylsulfoxide (DMSO). Once ATP was formed on the enzyme, it was not released even after removal of DMSO and Pi from the solution. The half maximal concentration of medium Pi for ATP synthesis was 1mM. The pH optimum for enzyme-bound ATP formation was about 6.5. Under the optimum conditions, a yield of up to 0.8 mol of ATP/mol of TF1 was obtained.  相似文献   

18.
We have examined intermediate Pi-water oxygen exchange during [gamma-18O]ATP hydrolysis by the F1 adenosine triphosphatase from Escherichia coli K-12. Water oxygen incorporation into each Pi released was increased as ATP concentration was lowered as observed previously for the same reaction catalyzed by the enzyme from eukaryotic sources. Heterogeneous distributions of 18O in product Pi were produced by coexisting epsilon subunit-replete and epsilon subunit-depleted enzyme molecules. The epsilon-replete enzyme showed a much higher probability for oxygen exchange. These data imply that the epsilon subunit inhibits net ATP hydrolysis by imposing conformational constraints which reduce the cooperative conformational interactions that promote ADP and Pi release. Four enzyme variants altered in alpha or beta subunit structure with reduced net hydrolytic activity showed sharply increased oxygen exchange during ATP hydrolysis. Heterogeneity was apparent in the 18O distribution of the product Pi, however. That behavior could reflect hindered conformational interactions and/or increased affinity of the alpha 3 beta 3 gamma delta complex for the epsilon subunit. In contrast, enzyme from mutant uncA401 showed very little oxygen exchange accompanying hydrolysis of 20 microM ATP. This is the only enzyme so far reported with this unusual property. Its rate limitation appears to be in the hydrolytic rather than the product release step of the catalytic sequence.  相似文献   

19.
The effects of sulfite, bicarbonate, thiocyanate, methanol, ethanol, glycerol, dimethy sulfoxide and ADP on the ATPase activity of the coupling factor from liver mitochondria (F1) and pea chloroplasts (CF1) and of the anion-sensitive ATPase from rat erythrocytes were investigated. Under steady-state conditions of ATP hydrolysis catalyzed by F1, CF1, and erythrocyte ATPase, three Km values for each of the enzymes, three activation constants for sulfite and three inhibition constants for thiocyanate were determined. The efficiency and direction of the effects of anions, alcohols and ADP strongly depend on temperature and substrate (Mg-ATP) concentration. The mechanisms of modification by anions and alcohols of the ATPase activities are discussed.  相似文献   

20.
We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号