首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Biomimetic cooperativity of hydration effect and effect of ethanol favorable for binding of bad organic sorbates were observed for their vapor sorption by cross-linked poly(N-6-aminohexylacrylamide) (PNAHAA) in the absence of liquid phase. The vapor sorption isotherms were determined for these systems by the static method of gas chromatographic headspace analysis at 298 K. The hydration above 0.09-0.13 g of H(2)O/(g of polymer) gives a cooperative increase in the PNAHAA binding affinity for benzene, cyclohexane, dioxane, and propanols up to a level which does not change by further hydration, indicating the polymer antiplasticization. Bad sorbates (dioxane, benzene) were observed to have a biomimetic cooperative influence on the binding of ethanol by the dried PNAHAA. This cooperativity does not occur in ternary systems with good nonhydroxylic sorbate acetonitrile.  相似文献   

2.
3.
The heat capacity changes for interaction of human serum albumin (HSA) and a cationic surfactant—cetylpyridinium chloride (CPC), were studied at conditions close to physiological (50 mM HEPES or phosphate buffer, pH 7.4 and 160 mM NaCl) carrying out isothermal calorimetric titrations (ITC) at various temperatures (20-40 °C). ITC measurements indicated that the small endothermic changes associated with CPC demicellization were temperature independent at these conditions. Surprisingly, important enthalpy changes associated with binding of CPC to HSA were exothermic and temperature independent at lower concentrations (below 0.022 mM) of CPC and endothermic and temperature dependent at higher concentrations of CPC. The values of heat capacity changes were obtained for each studied concentration of CPC from the plot of enthalpy changes vs temperature. The obtained results demonstrate the temperature independence of heat capacity changes at entire range of studied CPC concentrations. Both enthalpograms and heat capacity curves indicate the two-step mechanism of HSA folding changes due to its interactions with CPC. The first step corresponds to transition from native state to partially unfolded state and the second to unfolding and to the loss of tertiary structure. The analysis of the results indicates that predominant cooperative unfolding occurs at CPC/HSA molar ratio region between 25 and 30. Such information could not be extracted from thermograms and describes the role of heat capacity as a major thermodynamic quantity giving insight on physical, mechanistic and even atomic-level into how HSA may unfold and interact with CPC. The effect of CPC binding on HSA intrinsic fluorescence, UV-Vis and CD spectra were also examined. Hence, the analysis of spectral data confirms the ITC results about the biphasic mechanism of HSA folding changes induced by CPC. The CD measurement also represents the conservation of considerable secondary structure of HSA due to interaction with CPC.  相似文献   

4.
1. The optical rotation and reduced viscosity of bovine serum albumin and chymotrypsinogen A in solvents containing phenol, acetic acid and water were studied. 2. The changes brought about in the properties of the proteins by varying the composition of the solvent or by heat treatment in these solvents were established to be reversible. 3. A method for returning the proteins to aqueous media, based on these observations, was worked out. 4. The recovered proteins were shown to be very similar to, if not identical with, the native proteins on the basis of measurements of optical rotation, viscosity, sedimentation, ultraviolet spectroscopy, immunochemical behaviour (serum albumin) and proteolytic activity (chymotrypsinogen A, after activation with trypsin). 5. The importance of the findings for partitioning of polyelectrolytes in the phenol-aqueous buffer systems is discussed.  相似文献   

5.
6.
Homotropic cooperative binding was observed at vapor sorption of organic solvents (acetonitrile, propionitrile, ethanol, 1-propanol, 2-propanol, nitroethane) by dried solid trypsin from porcine pancreas (0.05 g H2O/g protein). The vapor sorption isotherms were obtained by the static method of gas chromatographic headspace analysis at 298 K for 'vapor solvent+solid trypsin' systems in the absence of the liquid phase. All isotherms have a sigmoidal shape with significant sorbate uptake only above the threshold of sorbate thermodynamic activity. On the sorption isotherms of non-hydroxylic sorbates the saturation of trypsin by organic solvent was observed above the sorbate threshold activity. The formation of inclusion compounds with phase transition between solvent-free and solvent-saturated trypsin is supposed. Approximation of obtained isotherms by the Hill equation gives the inclusion stoichiometry S, inclusion free energy, and the Hill constant N of clathrates. The inclusion stoichiometry S depends significantly on the size and shape of sorbate molecules and changes from S=31 mol of sorbate per mol of trypsin for ethanol to S=6 for nitroethane. The inclusion free energies determined for the standard states of pure liquid sorbate and infinitely dilute solution in toluene are in the range from -0.5 to -1.2 kJ/mol and from -3.1 to -8.1 kJ/mol, respectively, per 1 mol of sorbate. The Hill constants are relatively high: from N=5.6 for 1-propanol to N approximately equal to 10(3) for nitroethane. The implication of the obtained results for the interpretation of solvent effects on the enzyme activity and stability in low-water medium is discussed.  相似文献   

7.
8.
Binding human serum albumin (HSA) of three polyoxometalates (POMs) with the Wells-Dawson structure, alpha(2)-[P2W17O61]10- (abbreviated as alpha(2)-P2W17) and two of its metal-substituted derivatives, alpha(2)-[NiP2W17O61]8- and alpha(2)-[CuP2W17O61]8- (alpha(2)-P2W17Ni and alpha(2)-P2W17Cu, respectively) was studied in an aqueous medium at pH 7.5. Fluorescence quenching, circular dichroism (CD), thermal denaturation, and isothermal titration calorimetry (ITC) were used for this purpose. The results were compared with those obtained previously with the Keggin structure POM, [H2W12O40]6- (H2W12), and the wheel-shaped structure, [NaP5W30O110]14- (P5W30). All these POMs bind HSA mainly by electrostatic interactions. Comparison of the physical characteristics and HSA interaction parameters for the POMs of the present work and those studied previously showed that the overall charge of the clusters is not the single parameter governing the binding process and its consequences. In contrast, besides the influences of the structure, the dimension and/or weight of the POMs, the results have permitted highlighting of the importance of each POM atomic composition for its binding behavior.  相似文献   

9.
The interaction of pirprofen enantiomers with human serum albumin (HSA) was investigated by means of high-performance liquid chromatography (HPLC), circular dichroism (CD), and 1H NMR spectroscopy. HPLC experiments indicated that both pirprofen enantiomers were bound to one class of high-affinity binding sites (n(+) = 1.91 +/- 0.13, K(+) = (4.09 +/- 0.64) x 10(5) M-1, n(-) = 2.07 +/- 0.13, K(-) = (6.56 +/- 1.35) x 10(5) M-1) together with nonspecific binding (n'K'(+) = (1.51 +/- 0.21) x 10(4) M-1, n'K'(-) = (0.88 +/- 0.13) x 10(-4) M-1). Slight stereoselectivity in specific binding was demonstrated by the difference in product n(+)K(+) = (0.77 +/- 0.08) x 10(6) M-1 vs. n(-)K(-) = (1.30 +/- 0.21) x 10(6) M-1, i.e., the ratio n(-)K(-)/n(+)K(+) = 1.7. CD measurements showed changes in the binding sites located on the aromatic amino acid side chains (a small positive band at 315 nm and a pronounced negative extrinsic Cotton effect in the region 250-280 nm). The protein remains, however, in its predominantly alpha-helical conformation. The 1H NMR difference spectra confirmed that both pirprofen enantiomers interacted with HSA specifically, most probably with site II on the albumin molecule.  相似文献   

10.
Molecular binding of hypocrellins to human serum albumin (HSA) needs to be further clarified considering the phototherapeutic potentials of hypocrellins to vascular diseases. In the current work, it was estimated that the binding constant of hypocrellin B (HB) to HSA was 2.28 x 10(4) M(-1). Furthermore, based on the fluorescence responses for both HB and the tryptophan of HSA, it was suggested that the binding of HB to HSA should be more specific rather than distributed randomly on the surface of HSA, which was also confirmed by photobleaching of the tryptophan via photosensitization of HB. Besides, it was found that both of the photo-bleaching of the tryptophan and the photo-oxidation of HB were principally oxygen-dependent, suggesting reactive oxygen species generated via the photosensitization of HB, instead of the free radicals of the photosensitizer (HB*-), play the most important role in photodynamic processes.  相似文献   

11.
The interaction of human and bovine serum albumin with Cibacron Blue and Blue Dextran in aqueous solution was studied by means of difference spectroscopy. Both human and bovine albumin interact strongly with underivatized Cibacron Blue in three independent binding sites (K = 105). On the contrary, Blue Dextran interacts strongly only with human albumin, but does not bind appreciably to bovine albumin. These results suggest that the binding sites are exposed and easily accessible in human albumin, while in bovine albumin they are sterically hindered and therefore not accessible to the bulky Blue Dextran.  相似文献   

12.
T Oida 《Journal of biochemistry》1986,100(6):1533-1542
Binding of free fatty acid (FFA) to human serum albumin (HSA) was studied by 1H-NMR spectroscopy. Addition of FFA to defatted HSA at a mole ratio (FFA/HSA) up to 4 caused a small change in the NMR spectrum of HSA. The integrated intensity of sharp signals of the histidine C2 proton region of HSA decreased as the mole ratio was increased from 0 to 4 for both medium chain (lauric acid) and long chain (palmitic acid, stearic acid, and oleic acid) FFA's. By contrast, when the mole ratio was increased above 4, several histidine C2 proton signals coalesced and sharpened. Therefore, the HSA molecule appears to have a different conformation on binding with more than 4 FFA molecules, which allows increased local motions of HSA. By analyzing the NMR difference spectra of HSA with various amounts of FFA, the conformational change of HSA was investigated in more detail. The difference spectrum between [HSA + 2FFA] and [HSA + FFA] was almost the same as the difference spectrum between [HSA + FFA] and [HSA], which suggests that one primary site binds a pair of FFA molecules. These results are consistent with those of a spectroscopic study with polyene fatty acids (Berde, C.B., et al. (1979) J. Biol. Chem. 254, 391-400). The existence of a bimolecular complex of FFA molecules in aqueous solution may facilitate this type of binding. Similarly, it was found that the third and fourth FFA molecules were bound to a secondary site on HSA, because the difference spectrum between [HSA + 4FFA] and [HSA + 3FFA] was nearly equal to the difference spectrum between [HSA + 3FFA] and [HSA + 2FFA]. Further addition of FFA resulted in a drastic spectral change of HSA. The NMR difference spectrum between HSA solutions with perdeuterated FFA and those with undeuterated FFA gave the 1H-NMR spectra of FFA molecules bound to HSA. Titration of FFA revealed that, in the binding to the primary site of HSA, the carboxyl group of FFA is tightly bound to the protein, whereas the methyl group is not so firmly bound. In contrast, in the binding to low affinity sites, the methyl group is bound to HSA as tightly as other portions of the molecule.  相似文献   

13.
Sahoo BK  Ghosh KS  Dasgupta S 《Biopolymers》2009,91(2):108-119
Curcumin is a nontoxic natural product with diverse pharmacological potencies. We report the interaction of a potent synthetic derivative of curcumin, isoxazolcurcumin (IOC) with human serum albumin (HSA) using various biophysical methods. The observed fluorescence quenching of HSA by IOC is due to a complex formation by a static quenching process with a quenching constant of the order of 10(5) M(-1). The binding affinity and the number of binding sites were obtained from a Scatchard analysis. Thermodynamics reveals that the interaction is entropy driven with predominantly hydrophobic forces. From the observed F?rster-type fluorescence resonance energy transfer (FRET), the donor (Trp 214 in HSA) to acceptor (IOC) distance is calculated to be 3.2 nm. The conformational changes of HSA due to the interaction were investigated qualitatively from synchronous fluorescence spectra along with a quantitative estimation of the secondary structure from Fourier Transform Infrared (FTIR) and circular dichroism (CD) spectroscopies. Molecular docking studies were performed to obtain information on the possible residues involved in the interaction process, and changes in accessible surface area of the interacting residues were calculated. The preferred binding site of IOC was analyzed by ligand displacement experiments with 1-anilino-8-naphthalenesulfonate (ANS) and warfarin-bound HSA.  相似文献   

14.
Large fragments of human serum albumin were produced by treatment of the native protein with pepsin at pH3.5. Published sequences of human albumin [Behrens, Spiekerman & Brown (1975) Fed. Proc. Fed. Am. Soc. Exp. Biol. 34, 591; Meloun, Moravek & Kostka (1975) FEBSLett.58, 134-137]were used to locate the fragments in the primary structure. The fragments support both the sequence and proposed disulphide-linkage pattern (Behrens et al., 1975). As the pH of a solution of albumin is lowered from pH4 to pH3.5, the protein undergoes a reversible conformational change known as the N-F transition. The distribution of large fragments of human albumin digested with pepsin in the above pH region was critically dependent on pH. It appeared that this distribution was dependent on the conformation of the protein at low pH, rather than the activity of pepsin. The yields of the large fragments produced by peptic digestion at different values of pH suggested that the C-terminal region of albumin unfolds or separates from the rest of the molecule during the N-F transition. The similarity of peptic fragments of human and bovine albumin produced under identical conditions supports the proposed similar tertiary structure of these molecules.  相似文献   

15.
16.
Rate constants for the hydration of bilirubin bound to unilamellar bilayers of dioleoylphosphatidylcholine and albumin were measured by stopped-flow methods. Rate constants for association of bilirubin with these vesicles and albumin were calculated from measured rate constants for dissociation and the equilibrium binding constants of bilirubin and lipids or albumin. Rate constants for hydration (dissociation) for bilirubin bound to dioleoylphosphatidylcholine and albumin were 71 s-1 and 1.8 s-1 respectively. Rate constants for association were 4.0 10(7) s-1 and 1.1 10(9) M-1 s-1, respectively. Both rates for interactions of bilirubin with bilayers were essentially independent of temperature in the range 0-40 degrees C, indicating that barriers to entry and exit of bilirubin from bilayers were entropic. Rates of transbilayer movement of bilirubin in dioleoylphosphatidylcholine were too fast to resolve by measuring rates of hydration of bilirubin. Rate constants for hydration of bilirubin bound to bilayers with less avidity for bilirubin as compared with dioleoylphosphatidylcholine also were too fast to measure with stopped-flow methods. In addition to providing details of the energetic basis for interactions between bilirubin and membranes, the data allow for calculating the maximal rates at which bilirubin could transfer spontaneously from sites on albumin in blood to the interior of cells. The data show, in this regard, that this rate is 10-50 fold faster than measured rates of uptake of bilirubin by intact liver.  相似文献   

17.
18.
Interaction of taxol with human serum albumin   总被引:16,自引:0,他引:16  
Taxol (paclitaxel) is an anticancer drug, which interacts with microtuble proteins, in a manner that catalyzes their formation from tubulin and stabilizes the resulting structures (Nogales et al., Nature 375 (1995) 424-427). This study was designed to examine the interaction of taxol with human serum albumin (HSA) in aqueous solution at physiological pH with drug concentrations of 0.0001-0.1 mM, and HSA (fatty acid free) concentration of 2% w/v. Gel electrophoresis, absorption spectra and Fourier transform infrared (FTIR) spectroscopy with self-deconvolution and second-derivative resolution enhancement were used to determine the drug binding mode, binding constant and the protein secondary structure in the presence of taxol in aqueous solution. Spectroscopic evidence showed that taxol-protein interaction results into two types of drug-HSA complexes with overall binding constant of K=1.43 x 10(4) M(-1). The molar ratios of complexes were of taxol/HSA 30/1 (30 mM taxol) and 90/1 (90 mM taxol) with the complex ratios of 1.9 and 3.4 drug molecules per HSA molecule, respectively. The taxol binding results in major protein secondary structural changes from that of the alpha-helix 55 to 45% and beta-sheet 22 to 26%, beta-anti 12 to 15% and turn 11 to 16%, in the taxol-HSA complexes. The observed spectral changes indicate a partial unfolding of the protein structure, in the presence of taxol in aqueous solution.  相似文献   

19.
Interaction of isofraxidin with human serum albumin   总被引:8,自引:0,他引:8  
This study was designed to examine the interaction of isofraxidin with human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 3.3 x 10(-6) mol L(-1)-3.0x10(-5) mol L(-1) and HSA concentration at 1.5 x 10(-6) mol L(-1). Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy were used to determine the drug-binding mode, the binding constant and the protein structure changes in the presence of isofraxidin in aqueous solution. Spectroscopic evidence showed that the interaction results in one type of isofraxidin-HSA complex with binding constants of 4.1266 x 10(5) L mol(-1), 3.8612 x 10(5) L mol(-1), 3.5063 x 10(5) L mol(-1), 3.1241 x 10(5) L mol(-1) at 296 K, 303 K, 310 K, 318 K, respectively. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be -10.08 kJ mol(-1) and 73.57 J mol(-1) K(-1) according to van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to HSA. The experiment results are nearly in accordance with the calculation results obtained by Silicon Graphics Ocatane2 workstation.  相似文献   

20.
The reaction of human serum albumin (HSA) with aldoses (C3-C6) and acetaldehyde has been studied. U.v. and fluorescent spectra of the HSA-glyceraldehyde and HSA-GlcN adducts reveal yellow chromophores absorbing at 300-350 nm and emitting at 435 nm. However, even limited reaction of HSA with acetaldehyde induced perturbation in the Trp microenvironment. C.d. spectra of the adducts show an average 20% decrement in mean residual ellipticity [theta], which is independent of the extent of the reaction and the aldose used. It is concluded that most of the reactions with aldoses occur at the surface of the HSA molecule. With the exception of the GlcN adduct, the HSA adducts rearrange to produce pyrrole rings on the protein surface. I.e.f. analysis shows that the pI values of the modified HSA are almost linearly correlated with the chain length of the reacting aldose: from pI 4.2 for HSA-glyceraldehyde up to pI 5.0 for HSA-GlcN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号