首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, an effort was made to design prolonged release Eudragit nanoparticles of brimonidine tartrate by double emulsion–solvent evaporation technique for the treatment of open-angle glaucoma. The effect of various formulation variables like initial drug amount, lecithin proportion, phase volume and pH, secondary emulsifier and polymer proportion were studied. Various process variables like energy and duration of emulsification, lyophilization on the characteristics of nanoparticles and in vitro drug release profile were studied. The selected formulations were subjected to in vivo intraocular pressure-lowering efficacy studies by administering aqueous dispersion of nanoparticles into the lower cul de sac of glaucomatous rabbits. The prepared Eudragit-based nanoparticles were found to have narrow particle size range and improved drug loading. The investigated process and formulation variables found to have significant effect on the particle size, drug loading and entrapment efficiency, and in vitro drug release profile of nanoparticles. The selected formulations upon in vivo ocular irritability and tolerability tests were found to be well tolerated with no signs of irritation. In vivo pharmacodynamic efficacy studies revealed that the selected nanoparticle formulations significantly improved the therapy as area under the ∆IOP vs. time curve [AUC(∆IOP vs.t)] showed several fold increase in intensity and duration of intraocular pressure (IOP) decrease. All the selected nanoparticle formulations were found to prolong the drug release in vitro and prolong IOP reduction efficacy in vivo, thus rendering them as a potential carrier in developing improved drug delivery systems for the treatment of glaucoma.  相似文献   

2.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

3.
Freshwater snails (Pila ovata) were collected and subjected to four different storage microcosms: body of stagnant water (BSW), body of water changed intermittently (BWCI), hibernating condition (HC) and depuration process (DP). Samples from the different microcosms were analysed for microbiological profiles and dynamics. A significant (P= 0.05) increase (≈1.30 log c.f.u g−1) occurred in samples exposed to BSW. In contrast, unappreciable change was observed in samples subjected to BWCI. Much higher microbial populations were found in the intestines. Hibernation resulted in initial (i.e. within the first 3 months) microbial decrease but increase occurred thereafter. A more heterogeneous bacterial flora was observed at the initial stage of HC but anaerobic spore-formers dominated at the end of the HC. A significant (P= 0.05) microbial decrease occurred within 2 days of DP but thereafter remained virtually unchanged. The pH of samples exposed to BSW increased drastically. The observed microbial profiles have demonstrated the impacts of different microcosms on the potential risk or safety of freshwater snails to consumers. These therefore have underscored the importance of adequate processing/cooking prior to consumption of freshwater snails.  相似文献   

4.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficiency way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug subtance.  相似文献   

5.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficient way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug substance.  相似文献   

6.
The present study involves a novel strategy for the preparation of superparamagnetic nanoparticles of crosslinked starch impregnated with homogeneously dispersed nanosized iron oxide. The nanoparticles were loaded with an anticancer drug ‘cisplatin’ and the drug release kinetics was investigated spectrophotometrically at physiological pH (7.4). The nanoparticles were characterized by Fourier transform infra red (FTIR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and magnetization studies. The particle size of magnetic starch nanoparticles was found to lie in the range of 20-90 nm. The influence of factors like chemical composition of nanoparticles, pH and temperature of the release media and applied magnetic field was investigated on the release profiles of the drug. The prepared nanoparticles could provide a possible pathway for targeted and controlled delivery of anticancer drugs minimizing side effects and achieving higher efficacy.  相似文献   

7.

Biofabrication of nanoparticles via the principles of green nanotechnology is a key issue addressed in nanobiotechnology research. There is a growing need for development of a synthesis method for producing biocompatible stable nanoparticles in order to avoid adverse effects in medical applications. We report the use of simple and rapid biosynthesis method for the preparation of gold nanoparticles using Macrophomina phaseolina (Tassi) Goid, a soil-borne pathogen. The effect of pH and temperature on the synthesis of gold nanoparticles by M. phaseolina was also assessed. Different techniques like UV-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Dynamic light scattering (DLS) measurements, Fourier transform infrared (FTIR), and EDX were used to characterize the gold nanoparticles. The movement of these gold nanoparticles inside Escherichia coli (ATCC11103) along with effect on growth and viability was evaluated. The biogenic gold nanoparticle was synthesized at 37 °C temperature and neutral pH. UV-Visible Spectroscopy, TEM, EDX, and DLS measurements confirm the formation of 14 to 16 nm biogenic gold nanoparticles. FTIR substantiates the presence of protein capping on Macrophomina phaseolina-mediated gold nanoparticles. The non-toxicity of gold nanoparticles was confirmed by the growth and viability assay while the TEM images validated the entry of gold nanoparticles without disrupting the structural integrity of E. coli. Biogenic method for the synthesis of nanoparticles using fungi is novel, efficient, without toxic chemicals. These biogenic gold nanoparticles themselves are nontoxic to the microbial cells and offer a better substitute for drug delivery system.

  相似文献   

8.
Alkaline xylanases from alkaliphilic Bacillus strains NCL (87-6-10) and Sam III were compared with the commercial xylanases Pulpzyme HC and Biopulp for their compatibility with detergents and proteases for laundry applications. Among the four xylanases evaluated, the enzyme from the alkaliphilic Bacillus strain NCL (87-6-10) was the most compatible. The enzyme retained its full activity (40 °C for 1 h) in the presence of detergents, whereas Pulpzyme HC and Sam III showed only 30% and 50% of their initial activity, respectively. Biopulp, though stable to detergents, had only marginal activity (5%)at pH 10. However, all four enzymes retained significant activity (80%) for 60 min in the presence of the proteases Alcalase and Conidiobolus protease. Supplementation of the enzyme enhanced the cleaning ability of the detergents.  相似文献   

9.
The purpose of this study was to prepare low molecular weight alginic acid (LMWA) nanoparticles by cation-induced, controlled gelification of depolymerized alginic acid for effective drug delivery to drug resistant bacteria. The depolymerization reaction was performed using potassium persulfate oxidation at an optimized condition. The optimized conditions for depolymerization were anticipated to be 37°C, pH 4, 2 days reaction time, and a 0.075 M concentration of potassium persulphate containing 0.001 M silver nitrate in the final reaction mixture. Gel permeation chromatography showed depolymerized alginic acid had an average molecular weight of 20.95 ± 0.49 kDa. Depolymerized alginic acid was also characterized for its structural integrity by X-ray diffraction, nuclear magnetic resonance, and Fourier transform spectroscopy. Depolymerized alginic acid was used to prepare low molecular weight nanoparticles with a particle size of 54 ± 0.41 nm, and a zetapotential of −32.2 ± 3.91 mV. The nanoparicles were then subjected to tetracycline loading. In vitro drug loading and drug release efficiencies after 100 h were determined to be 66.56 ± 1.88 and 61.8 ± 0.141%, respectively. Finally, the minimal inhibitory concentration and a putative mode of action for the tetracycline nanoparticles were determined using tetracycline resistant bacteria, Escherichia coli XL-1.  相似文献   

10.
The aim of this study was to formulate a sustained release system for indomethacin (IND) with rosin gum obtained from a pine tree. Rosin microparticles were prepared by a dispersion and dialysis method without the addition of surfactant. In order to investigate the influence of solvents on the formation of colloidal microparitcles, various solvents like ethanol, DMF, DMAc, and acetone were used. The rosin microparticles containing IND were characterized by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The morphologies of rosin microparticles observed by scanning electron microscopy (SEM) were spherical. The solvents used to dissolve rosin significantly affected the drug content and drug release rate of IND. The release behaviors of IND from the rosin microparticles were dependent on the drug content and size of the particles. Rosin microparticles with a higher drug content and of a larger particle size had a slower drug release rate. Also, the IND release rate from the rosin microparticles could be regulated by the rosin content in the microparticles. From these results, rosin microparticles have the potential of being used as a sustained release system of IND.  相似文献   

11.
Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.  相似文献   

12.
在反溶剂法制备纳米粒过程中,pH值在一定程度上会对其产生影响。本文通过在不同酸碱环境下运用反溶剂法制备牛血清白蛋白包被酒石酸长春瑞滨纳米粒,进而借助于电位耦合作用来研究纳米粒制备工艺。研究结果表明:当pH=4.5至7.5时,酒石酸长春瑞滨和牛血清白蛋白带有异种电荷,而当pH=2.5,3.5,8.5,9.5时它们均带有同种电荷。当pH=7.5时,牛血清白蛋白带有负电荷即-8.52 mV,酒石酸长春瑞滨带有正电荷即+4.48mV。此时得到牛血清白蛋白包被酒石酸长春瑞滨纳米粒粒径为193.3 nm,Zeta电位为-30.86 mV,而且在该pH下对纳米粒制备工艺进行了优化,最终它的载药量和包封率达到了45.6%和90.6%。  相似文献   

13.
The aim of the present research was to evaluate the potential of galactosylated low molecular weight chitosan (Gal-LMWC) nanoparticles bearing positively charged anticancer, doxorubicin (DOX) for hepatocyte targeting. The chitosan from crab shell was depolymerized, and the lactobionic acid was coupled with LMWC using carbodiimide chemistry. The depolymerized and galactosylated polymers were characterized. Two types of Gal-LMWC(s) with variable degree of substitution were employed to prepare the nanoparticles using ionotropic gelation with pentasodium tripolyphosphate anions. Factors affecting nanoparticles formation were discussed. The nanoparticles were characterized by transmission electron microscopy and photon correlation spectroscopy and found to be spherical in the size range 106–320 nm. Relatively higher percent DOX entrapment was obtained for Gal-LMWC(s) nanoparticles than for LMWC nanoparticles. A further increase in drug entrapment was found with nanoparticles prepared by Gal-LMWC with higher degree of substitution. A hypothesis which correlates the ionic concentration of DOX in nanoparticles preparation medium and percent DOX entrapment in cationic polymer has been proposed to explain the enhanced DOX entrapment. In-vitro drug release study demonstrated an initial burst release followed by a sustained release. The targeting potential of the prepared nanoparticles was assessed by in vitro cytotoxicity study using the human hepatocellular carcinoma cell line (HepG2) expressing the ASGP receptors on their surfaces. The enthusiastic results showed the feasibility of Gal-LMWC(s) to entrap the cationic DOX and targeting potential of developed Gal-LMWC(s) nanoparticles to HepG2 cell line.  相似文献   

14.
Han H  Cui M  Wei L  Yang H  Shen J 《Bioresource technology》2011,102(17):7903-7909
The effects of hematite nanoparticles concentration (0-1600 mg/L) and initial pH (4.0-10.0) on hydrogen production were investigated in batch assays using sucrose-fed anaerobic mixed bacteria at 35 °C. The optimum hematite nanoparticles concentration with an initial pH 8.48 was 200 mg/L, with the maximum hydrogen yield of 3.21 mol H2/mol sucrose which was 32.64% higher than the blank test. At 200 mg/L hematite nanoparticles concentration, further initial pH optimization experiments indicated that at pH 6.0 the maximum hydrogen yield reached to 3.57 mol H2/mol sucrose and hydrogen content was 66.1%. The slow release of hematite nanoparticles had been recorded by transmission electron microscopy (TEM). In addition, TEM analysis indicated that the hematite nanoparticles can affect the shape of bacteria, namely, its length increased from ca. 2.0-3.6 μm to ca. 2.6-5.6 μm, and width became narrower.  相似文献   

15.
The objective of this study was to evaluate Camptothecin (CAMP)-loaded poly(N-isopropylacrylamide) (NIPAAm)/chitosan nanoparticles as a pH-sensitive carrier for specifically targeting tumors. The synthesis and properties of the system was studied by adjusting the mass ratio of NIPAAm and chitosan. The drug release characteristics of nanoparticles in vitro were investigated. The results showed that when the charge ratio between NIPAAm and chitosan of 4:1 (w/w) was achieved, the drug-loaded nanoparticles were most sensitive to tumor pH. Encapsulation efficiencies and loading were 73.7% and 8.4%, respectively. The cumulative release rate of CAMP was optimal at pH 6.8 and decreased rapidly either below pH 6.5 or above pH 6.9 in 37 °C. Based on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) test and fluorescence microscopy results, CAMP-loaded nanoparticles showed cytotoxicity at pH 6.8 but minimal cytotoxicity at pH 7.4. The pH-sensitive poly NIPAAm/chitosan nanoparticles provided some distinct advantages in delivering anti-cancer drugs to targeted tissues.  相似文献   

16.
Research efforts have been devoted to demonstrating that the pH-sensitive characteristics of poly NIPAAm/chitosan nanoparticles can be applied to targeting tumors. A copolymer of (NIPAAm) and chitosan (4:1, m/m) was synthesized, and its drug release characteristics investigated. The results revealed that drug-loaded nanoparticles which encapsulation and loading efficiencies were 85.7% and 9.6%, respectively, exhibited pH-sensitive responses to tumor pH. The cumulative release rate was significantly enhanced below pH 6.8 and decreased rapidly above pH 6.9 at 36.5 ± 0.5 °C. MTT assay and fluorescence microscopic study showed that drug release was drastically promoted in tumor surroundings while exerting less effect in normal conditions. For mice treated with nanoparticles, the decrease in body weight was limited, and significant tumor regression was observed with complete regression in more than 50% of the mice. The life span of tumor-bearing mice was significantly increased when they were treated with nanoparticles. Thereby, the super pH-sensitive poly NIPAAm/chitosan nanoparticles may provide outstanding advantages for anti-cancer drug delivery.  相似文献   

17.
The specific aim of the present study was to investigate the biodegradation and biocompatibility characteristics of rosin, a natural film-forming polymer. Both in vitro as well as in vivo methods were used for assessment of the same. The in vitro degradation of rosin films was followed in pH 7.4 phosphate buffered saline at 37°C and in vivo by subdermal implantation in rats for up to 90 days. Initial biocompatibility was followed on postoperative days 7, 14, 21, and 28 by histological observations of the surrounding tissues around the implanted films. Poly (DL-lactic-co-glycolic acid) (PLGA) (50∶50) was used as reference material for biocompatibility. Rate and extent of degradation were followed in terms of dry film weight loss, molecular weight (MW) decline, and surface morphological changes. Although the rate of in vitro degradation was slow, rosin-free films showed complete degradation between 60 and 90 days following subdermal implantation in rats. The films degraded following different rates, in vitro and in vivo, but the mechanism followed was primarily bulk degradation. Rosin films demonstrated inflammatory reactions similar to PLGA, indicative of good biocompatibility. Good biocompatibility comparable to PLGA is demonstrated by the absence of necrosis or abscess formation in the surrounding tissues. The study provides valuable insight, which may lead to new applications of rosin in the field of drug delivery.  相似文献   

18.
The preparation, properties, and application in adriamycin delivery ofbiocompatible and biodegradable poly(lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) nanoparticles are discussed. PLGA-PEG copolymers were synthesized by ring opening polymerization of the dl-lactide and glycolide in the presence of PEG1000. 1H-NMR and FT-IR spectrum were consistent with the structure of PLGA-PEG copolymers. The adriamycin-loaded nanoparticles could be prepared using a precipitation-solvent evaporation technique. The nanoparticles have been produced by a precipitation-solvent evaporation technique. The physical characteristics and drug loading efficiency of the PLGA-PEG nanoparticles were influenced by the composition of the PLGA-PEG copolymers used to prepare the nanoparticles. Particle sizes were between 65 and 100 nm for different compositions of PLGA-PEG copolymers. PLGA-PEG nanoparticles prepared from copolymers having relatively high PLGA/PEG ratios were smaller. Entrapment efficiency was 25%-33%. Adriamycin release from the nanoparticles at pH 7.4 showed an initial burst release and then sustained release phase. These results showed that PLGA-PEG nanoparticles could be an effective carrier for cancer therapy.  相似文献   

19.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5), but S. bovis JB1 does not have antimicrobial activity. Preliminary experiments revealed an anomaly. When S. bovis JB1 cells were washed in stationary phase S. bovis HC5 cell-free culture supernatant, the S. bovis JB1 cells were subsequently able to inhibit hyper-ammonia producing ruminal bacteria (Clostridium sticklandii, Clostridium aminophilum and Peptostreptococcus anaerobius). Other non-bacteriocin producing S. bovis strains also had the ability to bind and transfer semi-purified bovicin HC5. Bovicin HC5 that was bound to S. bovis JB1 was much more resistant to Pronase E than cell-free bovicin HC5, but it could be inactivated if the incubation period was 24 h. Acidic NaCl treatment (100 mM, pH 2.0) liberates half of the bovicin HC5 from S. bovis HC5, but it did not prevent bovicin HC5 from binding to S. bovis JB1. Acidic NaCl liberated some bovicin HC5 from S. bovis JB1, but the decrease in activity was only 2-fold. Bovicin HC5 is a positively charged peptide, and the ability of S. bovis JB1 to bind bovicin HC5 could be inhibited by either calcium or magnesium (100 mM). Acidic NaCl-treated S. bovis JB1 cells were unable to accumulate potassium, but they were still able to bind bovicin HC5 and prevent potassium accumulation by untreated S. bovis JB1 cells. Based on these results, bovicin HC5 bound to S. bovis JB1 cells still acts as a pore-forming lantibiotic.  相似文献   

20.
The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241–274 nm) and 25.8–62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号