首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We present the complete nucleotide sequence of a Drosophila alpha-amylase gene and its flanking regions, as determined by cDNA and genomic sequence analysis. This gene, unlike its mammalian counterparts, contains no introns. Nevertheless the insect and mammalian genes share extensive nucleotide similarity and the insect protein contains the four amino acid sequence blocks common to all alpha-amylases. In Drosophila melanogaster, there are two closely-linked copies of the alpha-amylase gene and they are divergently transcribed. In the 5'-regions of the two gene-copies we find high sequence divergence, yet the typical eukaryotic gene expression motifs have been maintained. The 5'-terminus of the alpha-amylase mRNA, as determined by primer extension analysis, maps to a characteristic Drosophila sequence motif. Additional conserved elements upstream of both genes may also be involved in amylase gene expression which is known to be under complex controls that include glucose repression.  相似文献   

5.
We have cloned cDNA for TTYH1, a human homologue of the Drosophila melanogaster tweety (tty) gene. The 450-residue predicted protein shows 27% amino acid sequence identity (51% similarity) to the Drosophila protein, which contains an additional C-terminal repetitive region. A second Drosophila homologue exhibits 42% identity (65% similarity) to the tty protein. Mouse (Ttyh1), macaque, and Caenorhabditis elegans homologues were also identified, and the complete coding sequence for the mouse gene was determined. The mouse protein is 91% identical to the human protein. Hydrophobicity analysis of the tty-related proteins indicates that they represent a new family of membrane proteins with five potential membrane-spanning regions. The yeast FTR1 and FTH1 iron transporter proteins and the mammalian neurotensin receptors 1 and 2 have a similar hydrophobicity profile, although there is no detectable sequence homology to the tty-related proteins. This suggests that the tweety-related proteins could be involved in transport of iron or other divalent cations or alternatively that they may be membrane-bound receptors. TTYH1 was mapped to chromosome 19q13.4 by FISH and by radiation hybrid mapping using the Stanford G3 panel.  相似文献   

6.
The nucleotide (nt) sequence of mouse 84-kDa heat shock protein (Hsp) cDNA has been determined using a combination of molecular cloning and oligodeoxynucleotide priming on poly(A) + RNA. The cDNA was 2.5 kb long, not including the poly(A) tail. It contained a 5' leader of about 94 nt that was G + C-rich, and a 243-nt 3'-untranslated region that was A + T-rich in the vicinity of the polyadenylation signal. Gene hsp84 codes for an acidic polypeptide of 724 amino acid (aa) residues. Mouse Hsp84 had 81% and 63% aa homology to Drosophila melanogaster Hsp82 and yeast Hsp90, respectively. The nucleotide sequence had 74% and 59% homology to Drosophila and yeast hsp sequences, respectively, in the coding regions of these genes. This homology did not extend to the 5' - and 3'-untranslated regions. Chromosomal analysis indicated that hsp84-related sequences are on at least three different chromosomes.  相似文献   

7.
《Gene》1997,185(1):11-17
Whilst searching for a mammalian homologue of the Drosophila glass gene we cloned a mouse cDNA whose deduced sequence encodes a 614 amino acid (aa) protein with ten Cys2-His2 (C2H2) zinc finger (Zf) motifs. Zfp64 is expressed in all developing and mature mouse tissues examined, except the mouse erythroleukemia (MEL) cell line. Zfp64 maps to the distal region of mouse chromosome 2 close to lens opacity 4 (Lop4), a semidominant cataract mutation. Sequence analysis shows that Zfp64 has multiple potential phosphorylation sites for casein kinase II (CK II), protein kinase C (PKC), tyrosine kinase (TK) and c-AMP- and c-GMP-dependent protein kinase (cA/GMPDPK).  相似文献   

8.
9.
We have used low stringency screening with the Drosophila melanogaster s36 chorion gene to recover its homologue from genomic and cDNA libraries of the medfly, Ceratitis capitata. The same gene has also been recovered from a genomic library of D. virilis. The medfly s36 gene shows similar developmental specificity as in Drosophila (early choriogenesis). It is also specifically amplified in ovarian follicles; this is the first report of chorion gene amplification outside the genus Drosophila. Alignments of s36 sequences from three species show that, in addition to its regulatory conservation, the s36 gene is extensively conserved in sequence, in a region corresponding to a central protein domain, and in short regions of 5' flanking DNA that might correspond to cis-regulatory elements.  相似文献   

10.
Sequence and expression of the Drosophila phenylalanine hydroxylase mRNA   总被引:2,自引:0,他引:2  
We report the cloning, nucleotide (nt) sequence and expression of the cDNA (pah) encoding phenylalanine hydroxylase (PAH) of Drosophila melanogaster. The strong hybridization signals observed in genomic blots when D. melanogaster DNA was probed with 32P-labeled human pah cDNA, indicated the existence of a high degree of sequence similarity between the pah genes of both species. The length of the pah genomic fragment is about 30 to 40 kb. The cDNA contains 84 bp of the 5'-untranslated region, 1359 bp of the protein-coding region and 87 bp of the 3' region, with only one polyadenylation signal. The isolated cDNA is probably full-length, since the size of the D. melanogaster PAH mRNA is 1.5 kb. At the nt level, the similarity of the D. melanogaster cDNA with human and rat pah cDNAs is 57.9% and 58.1%, respectively. The highest similarities are restricted to the nt sequence coding for the presumed hydroxylation domain. There is no nt sequence similarity between the first three exons of the human pah gene and an equivalent fraction of the D. melanogaster pah gene. At the amino acid (aa) level, the similarity in the presumed hydroxylation domain is 88.5%, in which two motifs of the structure AGLLSSXXXL are found, where X represents any aa. It was interesting to notice the conservation of aa 408, 311 and 280, where mutations are associated with phenylketonuria in humans. We observed, moreover, that, as it occurs in humans and rats, the expression of the D. melanogaster pah gene is tissue-specific and temporally regulated.  相似文献   

11.
12.
13.
S Fretzin  B D Allan  A van Daal  S C Elgin 《Gene》1991,107(2):341-342
A cDNA encoding an H3.3 histone variant in Drosophila melanogaster predicts a protein with an amino acid (aa) sequence identical with that in vertebrates. The D. melanogaster H3.3 nucleotide (nt) sequence has diverged significantly from that of both the H3.3 gene of vertebrates and the H3.1 gene of D. melanogaster, largely through third nt changes in its codons. The perfect H3.3 aa sequence conservation between organisms as phylogenetically divergent as vertebrates and flies suggests that the H3.3 histone variant itself is an important structural component of chromatin, apart from the value of its replication-independent expression pattern.  相似文献   

14.
15.
16.
17.
18.
19.
C Magoulas  D A Hickey 《Génome》1992,35(1):133-139
Several cDNA and genomic clones were isolated from Drosophila melanogaster gene libraries by hybridization with a region of a mammalian gene that contains a simple repetitive sequence of six GCN repeats. One of the cDNA clones, E6, was completely sequenced and it was shown that it contains a region of 16 GCN repeats; these repeats encode a polyalanine stretch within a long open reading frame. The sequencing of three different genomic clones (A, B, and D) revealed that all the isolated Drosophila clones are similar to one another in a short region containing variable numbers of the GCN repeat. The genomic clone B was found to be the genomic counterpart of the cDNA clone E6. The other genomic clones, A and D, also hybridize with Drosophila cDNA clones at high stringency. These results indicate that the short GCN repetitive sequences, which we have named ala, are found within transcribed regions of the Drosophila genome. These Drosophila genes containing the ala repeat do not show significant sequence similarity to any presently known gene; we have named these novel genes ala-A, ala-B, and ala-D. The cDNA clone from gene ala-B was named ala-E6.  相似文献   

20.
Genomic clones containing the full coding sequences of the two subunits of the Ca2+/calmodulin-stimulated protein phosphatase, calcineurin, were isolated from a Drosophila melanogaster genomic library using highly conserved human cDNA probes. Three clones encoded a 19.3-kDa protein whose sequence is 88% identical to that of human calcineurin B, the Ca(2+)-binding regulatory subunit of calcineurin. The coding sequences of the Drosophila and human calcineurin B genes are 69% identical. Drosophila calcineurin B is the product of a single intron-less gene located at position 4F on the X chromosome. Drosophila genomic clones encoding a highly conserved region of calcineurin A, the catalytic subunit of calcineurin, were used to locate the calcineurin A gene at position 21 EF on the second chromosome of Drosophila and to isolate calcineurin A cDNA clones from a Drosophila embryonic cDNA library. The structure of the calcineurin A gene was determined by comparison of the genomic and cDNA sequences. Twelve exons, spread over a total of 6.6 kilobases, were found to encode a 64.6-kDa protein 73% identical to either human calcineurin A alpha or beta. At the nucleotide level Drosophila calcineurin A cDNA is 67 and 65% identical to human calcineurin A alpha and beta cDNAs, respectively. Major differences between human and Drosophila calcineurins A are restricted to the amino and carboxyl termini, including two stretches of repetitive sequences in the carboxyl-terminal third of the Drosophila molecule. Motifs characteristic of the putative catalytic centers of protein phosphatase-1 and -2A and calcineurin are almost perfectly conserved. The calmodulin-binding and auto-inhibitory domains, characteristic of all mammalian calcineurins A, are also conserved. A remarkable feature of the calcineurin A gene is the location of the intron/exon junctions at the boundaries of the functional domains and the apparent conservation of the intron/exon junctions from Drosophila to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号