首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The snails Theodoxus danubialis and Theodoxus prevostianus form a single clade native to freshwaters of south-eastern Europe whose inter- and intraspecific relationships remain unresolved. The present study utilized a phylogeographical approach to clarify the relationship of these species as well as to reconstruct the evolutionary and demographic history of populations in the western portion of their range. Phylogenetic, population genetic, and nested clade analyses reveal a clade that has distributed itself upriver from a lower Danube River source population and become genetically distinct primarily through range expansion and localized allopatric divergence. Notably, this geographical pattern is replicated phylogenetically in the form of two cytochrome c oxidase subunit I (CO I) lineages that are present simultaneously in individual snails. Haplotypes from polymorphic individuals form two distinct clades, both of which show phylogenetic and nucleotide substitution patterns consistent with a mitochondrial origin, and whose common ancestor must have occurred in a lower Danube source population. Separated allopatrically from their Danubian relatives, populations of T. danubialis in northern Italy have also undergone substantial range expansion, much more recently than Danube watershed lineages. In addition to repeated patterns of range expansion, parallelism is found in T. prevostianus , which is shown to be a nonmonophyletic taxon of remarkable morphological and ecological similarity.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 603–617.  相似文献   

2.
The genetic divergence and the phylogenetic relationships of six Atherina boyeri (freshwater and marine origin) and five Atherina hepsetus populations from Greece were investigated using partial sequence analysis of 12s rRNA, 16s rRNA and control region mtDNA segments. Three different well divergent groups were revealed; the first one includes A. boyeri populations living in the sea, the second includes A. boyeri populations living in the lakes and lagoons whereas the third one includes all A. hepsetus populations. Fifty-seven different haplotypes were detected among the populations studied. In all three mtDNA segments examined, sequence analysis revealed the existence of fixed haplotypic differences discriminating A. boyeri populations inhabiting the lagoon and the lakes from both the coastal A. boyeri and the A. hepsetus populations. The genetic divergence values estimated between coastal (marine) A. boyeri populations and those living in the lagoon and the lakes are of the same order of magnitude as those observed among coastal A. boyeri and A. hepsetus populations. The results obtained by different phylogenetic methods were identical. The deep sequence divergence with the fixed different haplotypes observed suggests the occurrence of a cryptic or sibling species within A. boyeri complex.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 151–161.  相似文献   

3.
Leptodactylus fuscus is a neotropical frog ranging from Panamá to Argentina, to the east of the Andes mountains, and also inhabiting Margarita, Trinidad, and the Tobago islands. We performed phylogenetic analyses of 12S rRNA, 16S rRNA, tRNA-Leu, and ND1 mitochondrial (mt) DNA sequences from specimens collected across the geographic distribution of L. fuscus to examine two alternative hypotheses: (i) L. fuscus is a single, widely distributed species, or (ii) L. fuscus is a species complex. We tested statistically for geographic association and partitioning of genetic variation among mtDNA clades. The mtDNA data supported the hypothesis of several cryptic species within L. fuscus. Unlinked mtDNA and nuclear markers supported independently the distinctness of a 'northern' phylogenetic unit. In addition, the mtDNA data divided the southern populations into two clades that showed no sister relationship to each other, consistent with high differentiation and lack of gene flow among southern populations as suggested by allozyme data. Concordance between mtDNA and allozyme patterns suggests that cryptic speciation has occurred in L. fuscus without morphological or call differentiation. This study illustrates a case in which lineage splitting during the speciation process took place without divergence in reproductive isolation mechanisms (e.g. advertisement call in frogs), contrary to expectations predicted using a biological species framework.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 325–341. No claim to original US government works.  相似文献   

4.
The Australian populations of the green-eyed tree frog Litoria genimaculata consist of a northern and southern genetic lineage that meet in a mosaic contact zone comprising two independent areas of contact: one where the main ranges of the lineages overlap, and the second where a population of the southern lineage is isolated within the range of the northern lineage. A recent study failed to find significant reproductive isolation between the main ranges of the two lineages, despite deep genetic divergence, partial postzygotic isolation, and call differences. The study did, however, demonstrate rapid phenotypic divergence and speciation of the isolated population of the southern lineage from both the parapatric northern lineage and from the allopatric, but genetically similar, main range of the southern lineage. Herein, the isolated population of the southern lineage is described as a distinct species, Litoria myola sp. nov. , whereas the remainder of the southern lineage and the northern lineage are retained as a single, paraphyletic species, Litoria genimaculata . Resolving this unusual systematic situation demonstrates the value of using multiple lines of evidence in delimiting species. Litoria myola sp. nov. has a very small distribution and population size and warrants a Critically Endangered listing (B1, 2) under IUCN criteria. Threats and management recommendations are outlined, and the conservation of hybrid zones as areas of evolutionary novelty is discussed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 549–563.  相似文献   

5.
We analysed the variation at mitochondrial DNA (mtDNA) and six allozyme loci in two transects across a hybrid zone between the fire-bellied toads Bombina bombina and Bombina variegata in southern Poland. The mtDNA cline was narrower than allozyme clines in one transect (Przemyśl, β = 0.435, w  = 3.42 km) and shifted to the B .  bombina side in both (near Kraków by 1.32 km, α = 0.437, and near Przemyśl by 0.97 km, α = 0.319). Cytonuclear associations were weak. Narrowed mtDNA clines could be a by-product of female demography and lowered effective population size of mtDNA. Alternatively, restricted mtDNA introgression is a likely result of negative epistasis in recombinants augmented by environment-dependent selection because divergence of Bombina mitochondrial and nuclear genomes is large. The shift of the mtDNA cline, contrary to expectations from initial mating preferences and fecundity differences between the species, suggests that on the B .  bombina side of the zone hybrid females with B .  variegata mtDNA have a higher chance of leaving progeny.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 295–306.  相似文献   

6.
Population divergence can be detected by the divergence of functional and neutral characters. Under some circumstances, it is desirable to have available a character that is discretely expressed in either of the diverging genomes, rather than the evaluation of qualitative variation of continuous characters. In the present study, we investigated mass peaks of peptide hormones in a model system of population divergence, the hybrid zone of two Chorthippus parallelus subspecies in the French–Spanish Pyrenees. Mass spectra from neuroendocrine tissues have previously been identified as species-specific and may have a sufficient resolution to vary at the subspecies level. For the first time, we succeeded in the detection of a subspecies-specific expression of neuropeptides collected from single individuals. Mass spectra sampled from populations across the C. parallelus grasshopper hybrid zone indicated neuropeptide identity between the sexes and within sample sites. The distribution of a single distinct but variable peptide signal, however, very closely followed the cline of the hybrid zone as derived from the mean variation in several continuous characters. The identity of this peptide in populations from the northern Pyrenees and central Europe supports a neuropeptide differentiation of preglacial origin. The observed differentiation in the peptide profile of the two subspecies demonstrates that a peptidomic approach may be a promising perspective to reconstruct reproductive isolation in an insect hybrid zone.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 541–548.  相似文献   

7.
We generated mitochondrial DNA (mtDNA) sequence data from 402 individuals of the fire ant Solenopsis invicta collected from 11 native populations and analyzed these data using a combination of demographic, phylogenetic, and phylogeographic methods to infer features of the evolutionary history of this species. Prior expectations regarding high levels of genetic structure and isolation by distance among populations were supported by the data, but we also discovered several unanticipated patterns. Our analyses revealed a major genetic break between S. invicta mtDNA haplotypes that coincides with the Mesopotamia wetlands region of South America, resulting in two higher level nested clade groupings. In addition, we identified contrasting patterns of genetic differentiation within these two major groups, which may reflect differences in connectivity of suitable habitat in different parts of the native range of S. invicta. Our study represents the first attempt to understand the phylogeographic history of S. invicta across its native range.  相似文献   

8.
The genus Cynolebias (Cyprinodontiformes: Rivulidae) is a locally endemic and speciose group of Neotropical fishes with an annual life cycle. Members of the genus vary greatly in morphology and behaviour, and extensive interspecific karyotypic divergence has been documented among species from Uruguay, Argentina and Rio Grande do Sul, Brazil. We present a molecular systematic hypothesis of the relationships between these Cynolebias species based on phylogenetic analysis of a combined dataset containing 1825 base pairs of DNA sequence, representing three mitochondrial genes. The protein-coding cytochrome -b gene, the 12S and 16S rRNA mitochondrial genes, alone and in combination, yield robust support for monophyly within Cynolebias . Furthermore, our analyses identify two major Cynolebias clades, one of which contains at least four monophyletic groups. Corrected mtDNA genetic distances range from 5.2 to 17.5% between Cynolebias species, and application of a molecular clock suggests the occurrence of two pulses of cladogenesis, one in the late Miocene and another in the Pliocene–Pleistocene. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 49–59.  相似文献   

9.
Three endemic Cretan land snail species of the genus Mastus (Beck, 1837) from the island group of Koufonisi (south-east Crete) and the eastern part of Crete, were studied by multivariate analysis of shell morphology and analysis of mtDNA sequences. The phylogeny of the populations studied and the processes effecting the genetic and morphological diversity of the species were investigated. Extremely high mtDNA sequence divergence was observed both within and between populations. The Cretan populations could not be distinguished morphologically, while the populations of the islets were more distinct. We argue that the active geological past of the area (including sea level changes) and the long-term presence of humans has produced a mixing up of Mastus populations leading to the accumulation of high divergence of mtDNA sequences on a small spatial scale. The limited morphological diversity and the distinct shell 'identity' of the islets' populations can be attributed to the selective pressures of the island group.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78, 383–399.  相似文献   

10.
The extant taxa of central and northern Europe are commonly believed to derive from Pleistocene ancestors, who moved to the north from three separate glacial refugia: the Iberian and Italian peninsulae, as well as the southern Balkans. The issue of postglacial dispersal patterns was addressed through the investigation of population structure and phylogeography of the European roe deer, Capreolus capreolus . The genetic diversity in 376 individuals representing 14 allegedly native populations across their European range was assessed, using ten autosomal microsatellite loci and restriction fragment length polymorphisms of the mitochondrial D-loop and NADH dehydrogenase 1 gene segments. Our results suggest the existence of three major genetic lineages of roe deer in Europe. One comprises populations in the south-western limit of the species' distribution (i.e. Iberia), where an internal substructure splits a northern from a southern sublineage. A second lineage includes populations of southern and eastern Europe, as well as a separate sublineage sampled in central-southern Italy, where the existence of the subspecies Capreolus c. italicus was supported. In central-northern Europe, a third lineage is present, which appeared genetically rather homogeneous, although admixed, and equally divergent from both the eastern and western lineages. Current patterns of intraspecific genetic variation suggest that postglacial recolonization routes of this cervid to northern Europe could be due to range expansion from one or more refugia in central-eastern Europe, rather than proceeding from the Mediterranean areas.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 85–100.  相似文献   

11.
Two new taxa in Stipa L. Sect. Leiostipa Dumort., S. alba and S. letournexii ssp. ignea , are described from southern Tunisia (northern Africa). In addition, the S. letournexii complex is reviewed and a new combination, S. letournexii ssp. tunetana (H.Scholz) F.M. Vázquez, is presented.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 439–444.  相似文献   

12.
13.
The plethodontid genus Batrachoseps , the slender salamanders, is the most diverse clade of salamanders in western North America, but it has posed taxonomic difficulties because it contains many morphologically cryptic species. A segment of the mitochondrial DNA gene cytochrome b was studied for 278 individuals densely sampled from throughout the range of all 18 described species and several undescribed species. Phylogenetic analyses of the mtDNA data identify six major clades, one corresponding to the subgenus Plethopsis and five within a monophyletic subgenus Batrachoseps. All major clades and most species within these clades display strong phylogeographic structuring. Comparisons of mtDNA and allozyme data show that several allozymically cohesive groups are not monophyletic with respect to mtDNA. We suggest that this phenomenon results from fragmentation of populations, divergence in allopatry, and then recontact and gradual merging of units caused predominantly by male-mediated gene flow. The mtDNA offers evidence that populations were once more isolated than they are now, while the patterns of allozyme variation reflect recent and current interactions among populations. The complex patterns of morphological, allozymic and mtDNA variation associated with the constantly changing geological landscape give insight into the nature of processes responsible for species formation in Batrachoseps .  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 361–391.  相似文献   

14.
We used mitochondrial cytochrome  b sequences (up to 778 bp) and starch gel electrophoresis (45 loci) to examine the phylogeographical history of 39 populations of the California newt, Taricha torosa . Phylogenetic and population genetic methods were integrated to infer history at deep and shallow time depths. Using a molecular clock, the subspecies T. t. torosa and T. t. sierrae were estimated to have diverged 7–13 Mya. Within T. t. torosa, genetically differentiated groups were identified along coastal California, in southern California, and in the southern Sierra Nevada. The coastal group exhibited isolation by distance, but a lack of genetic variation north of present-day Monterey was indicative of a recent range expansion. In southern California, a disjunct population in central San Diego County was genetically diverged from coastal populations to the north (Nei's genetic distance of 0.113). However, mtDNA and protein data were geographically discordant regarding the boundary between the coastal and southern Californian groups, and a biogeographical scenario was developed to account for this discordance. The southern Sierran clade of T. t. torosa was weakly diverged from coastal populations for mtDNA sequence variation, yet was strongly differentiated for allozyme variation (Nei's genetic distance of 0.17–0.20). Populations of T. t. sierrae exhibited substantial population structure, and showed a steeper pattern of isolation by distance than did coastal populations of T. t. torosa . These results are interpreted in consideration of the known geomorphological history of California.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 213–239.  相似文献   

15.
Phylogenetic analyses based on mtDNA cytochrome  b were performed in 42 lizards of the Gymnodactylus darwinii complex from three regions within Brazil's Atlantic Forest. Mainland regions and continental shelf islands in the south-eastern range and mainland areas from the north-east were sampled. The criteria of maximum parsimony (MP), maximum likelihood (ML) and Bayesian methods were explored, with the robustness for nodes assessed by bootstrapping (MP and ML) and posterior probabilities (Bayesian searches). By all methods, three distinctive phylogroups were recovered: a south-eastern clade (SE) and two clades from northern regions (NE1 and NE2). The pattern of genetic structure of the major clades coincided with the presence of river systems in the Atlantic Forest, and based on corrected genetic distances between those clades, divergence times were tentatively estimated using mtDNA rates calibrated for squamate reptiles. The putative role of Atlantic Forest rivers in generating differentiation is discussed. We present a hypothesis of species limits for G. darwinii , based on concordant lines of evidence including cytogenetic and mtDNA analyses. Two chromosome races (cytotype A, 2n = 38; and cytotype B, 2n = 40) had distributions concordant with clades SE and NE1 + NE2, respectively. These races are interpreted to be full species on the basis of a number of empirical criteria.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 13–26.  相似文献   

16.
According to previous phylogeographic studies, high mountains at low latitudes are important areas for the study of the evolutionary history of arctic–alpine plants in surviving the Pleistocene climatic oscillations. To evaluate this hypothesis, we elucidated the genetic structure of the arctic–alpine plant, Loiseleuria procumbens , in the Japanese archipelago, which corresponds to one of the southernmost limits of its distribution, using 152 individuals from 17 populations that covered the entire distribution of the Japanese archipelago and Sakhalin, in addition to samples from Sweden. Based on 854 bp of chloroplast DNA, we detected eight haplotypes. Along with haplotype distribution, strong genetic differentiation between populations in central and northern Japan was elucidated by a neighbour-joining tree (100%) and spatial analysis of molecular variance (79%), which is consistent with other alpine plants in Japan, regardless of the species' range. In addition, the southernmost populations from northern Japan showed specific genetic structure, although the remaining areas of northern Japan and Sakhalin harboured an homogenous genetic structure. Our results suggest that the populations in central Japan persisted for a long time during the Pleistocene climatic oscillation and that genetic divergence occurred in situ , supporting our hypothesis in conjunction with a previous study of another arctic–alpine plant, Diapensia lapponica subsp. obovata .  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 403–412.  相似文献   

17.
We used mitochondrial [cytochrome c oxidase subunit I (CO I ), cytochrome b , and 16S] and nuclear [internal transcribed spacer (ITS) phylogenies of Skistodiaptomus copepods to test hypotheses of Pleistocene divergence and speciation within the genus. Mitochondrial (mt)DNA sequence divergences do not support hypotheses for Pleistocene speciation and instead suggest much more ancient speciation events in the genus. Skistodiaptomus oregonensis and Skistodiaptomus pygmaeus (i.e. two morphologically similar and parapatric species) exhibited uncorrected mtDNA sequence divergences exceeding 20%. Similarly, we identified three divergent clades of Skistodiaptomus pallidus that exhibited mtDNA sequence divergences exceeding 15%, suggesting that even intraspecific divergence within this morphospecies predates the Pleistocene. We found clear evidence of CO I pseudogenes in S. pygmaeus , but their presence did not lead to significant overestimates of sequence divergences for this gene. Substitution saturation and strong purifying selection have most likely led to underestimates of sequence divergences and divergence times among Skistodiaptomus . The widespread phenomenon of morphological stasis among genetically divergent copepod groups indicates that speciation often occurs with little or no morphological change. Instead, morphological evolution may occur idiosyncratically after speciation and create discordant patterns of morphological similarity, shared ancestry and divergence time. Cryptic species complexes are therefore common in copepods, and morphological species concepts underestimate their true species diversity.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 150–165.  相似文献   

18.
Two populations of softmouth trout ( Salmo obtusirostris ) from the rivers Neretva (Bosnia and Herzegovina) and Jadro (Croatia), along with two neighbouring populations of brown trout ( Salmo trutta ) were analysed with a suite of genetic markers (two mtDNA genes, two nuclear genes, and nine microsatellites) as well as morphological characters. The Jadro softmouth trout were fixed for a brown trout mtDNA haplotype of the Adriatic lineage, which is 1.7% divergent from a previously described haplotype characteristic for the Neretva softmouth trout. All other genetic markers, as well as morphological analysis, supported the clear distinction of softmouth trout from the rivers Neretva and Jadro from brown trout in neighbouring populations, and thus a mtDNA capture event is assumed. Population specific microsatellite allele profiles, as well as a high number of private alleles for both populations of softmouth trout, support the hybridization between brown trout and the Jadro softmouth trout most likely being of ancient origin, thus leading to a reticulate evolutionary pattern of mtDNA in this taxon.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 139–152.  相似文献   

19.
The structure of body size and shape divergence among populations of Poecilia vivipara inhabiting quaternary lagoons in South-eastern Brazil was studied. This species is abundant throughout an environmental gradient formed by water salinity differences. The salinity gradient influences the habitat structure (presence of macrophytes) and the fish community (presence of large predators). Size and shape variation within and among populations was quantified by geometric morphometrics and analysed by indirect and direct gradient ordinations, using salinity and geography as a framework. Morphological divergence was associated with the salinity gradient. The evolutionary allometries observed were independent of within-group static allometries. Sexually dimorphic patterns were observed in size variation and within-population allometries. Specimens from freshwater (higher predation) sites presented smaller sizes, relatively longer caudal regions, lower anterior regions and a ventrally displaced eye. These features are consistent with an ecomorphological paradigm for aquatic organisms from populations subject to intense predation. A process of directional selection is postulated as the most likely force driving diversification among P. vivipara populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 799–812.  相似文献   

20.
It is generally accepted that genitalia are among the fastest evolving characters in insects and that selection on these structures may increase speciation rates in groups with polygamous mating systems. If selection is causing genitalic divergence between or among populations of a species, one prediction is that geographical structure of genitalic morphology would be in place before genetic structure of a rapidly evolving neutral marker. The current study tests this hypothesis in the geographically widespread scarab beetle Phyllophaga hirticula by evaluating whether standing variation in male and female genitalia is more or less geographically structured than a mitochondrial genetic marker. Geographical structure of mitochondrial (mt)DNA and male and female genitalic shape were analysed using analysis of variance, multivariate analysis of variance, Mantel tests, and tests of spatial autocorrelation. The results show that, although female genitalia are more geographically structured than mtDNA, male genitalia are not. This pattern suggests that selection on female genitalic variation may be causing divergence of these structures among populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 135–149.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号