首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Microsatellite variation was studied at 48 microsatellite loci in 10 Drosophila melanogaster populations to investigate the population structure on the Australian east coast. Low, but statistically significant population differentiation was observed among most populations. The populations on the Australian mainland did not show evidence for isolation by distance. We conclude that the population structure of D. melanogaster on the Australian mainland is probably the result of a shared history (recent colonization). The observed differences between local D. melanogaster populations probably reflect variation in effective population sizes rather than patterns of gene flow. Two populations from Tasmania were more differentiated from the Australian mainland than a population from Israel, raising the question whether they are derived from the Australian mainland or colonized from a different source population.  相似文献   

3.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   

4.
    
The region around the Strait of Gibraltar is considered to be one of the most relevant 'hot spots' of biodiversity in the Mediterranean Basin due to its historical, biogeographical, and ecological features. Prominent among these is its role as a land bridge for the migration and differentiation of species during the Pleistocene, as a consequence of the lowering of sea level and climate changes associated with the Ice Ages. In the present study, we report a multilevel hierarchical investigation of the genetic diversity of Calicotome villosa , a common pioneer legume shrub, at the regional scale. The results of genetic analysis of progeny arrays are consistent with a predominantly outcrossing mating system in all the populations analysed. Geographically, a pattern of population isolation by distance was found, but the Strait accounted for only approximately 2% of the among-population genetic differentiation. Consequently, extensive historical gene flow appears to be the rule for this species in this area. According to the natural history traits of C. villosa (pollination, dispersal, and colonization ability), we hypothesize that gene flow must be strongly influenced by seed dispersal because pollen flow is very limited. Based on the history of trade and land use, cattle and human movements across the Strait must have strongly favoured seed dispersal. We review and discuss these results and compare them with those of other reported studies of genetic and phylogenetic differentiation across the Strait of Gibraltar. It is stressed that colonization ability, which depends upon seed dispersal and life form, can be a more critical factor in gene flow than pollination.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 39–51.  相似文献   

5.
    
Populations of the Australian freshwater snail Notopala sublineata (Conrad, 1850) have declined rapidly over the last decade, but are still abundant in most river systems of Western Queensland. These rivers are characterized by the unpredictable and highly variable nature of their climatic and hydrological regimes, with episodic periods of very large flow and many periods of little or no flow. We used mitochondrial sequences and allozymes to investigate the genetic structure and infer patterns of dispersal of N. sublineata within this unique environment. We sampled 24 waterholes throughout the four major catchments of the Lake Eyre Basin. Based on a 457-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, we identified 55 haplotypes in a sample of 256 individuals. Both nuclear and mitochondrial genetic datasets indicated high levels of genetic subdivision and restricted gene flow among populations within and among catchments. The mitochondrial haplotypes clustered into two main geographical clades, corresponding with two groups of adjacent catchments: Cooper–Bulloo and Diamantina–Georgina, which appear to have diverged 300 000 years ago. Populations of N. sublineata within these adjacent catchments seem to have diverged relatively recently, roughly 130 000 years ago. Contemporary dispersal seems to be absent between catchments but we suggest that climate fluctuations during the Pleistocene resulted in extensive floods that promoted historical movement of aquatic organisms across catchment boundaries.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 1–16.  相似文献   

6.
    
Aim A lack of genetic structure is predicted for Antarctic fish due to the duration of pelagic larval stages and the strength of the currents in the Southern Ocean, particularly the Antarctic Circumpolar Current. In this study we explored the population structure of the ocellated icefish, Chionodraco rastrospinosus, by means of analysing a total of 394 individuals collected at four geographical areas off the Antarctic Peninsula in the period 1996–2006. Location Elephant Island, southern South Shetlands, Joinville Island and South Orkneys in the Southern Ocean. Methods The spatio‐temporal genetic structure of Chionodraco rastrospinosus was explored using seven microsatellite loci. Existence and direction of gene flow across sampling locations were investigated using the isolation‐by‐migration procedure. Results Microsatellite data showed a lack of genetic structuring in the area studied, with no differences found at both the geographical or temporal level, and an eastward unidirectional gene flow among sites. This suggested a lack of genetic barriers for this species, attributable to larval dispersal following the Antarctic Circumpolar Current, which fits well with the predicted pattern for Antarctic fish. Re‐examination of genetic data of the closely related icefish Chaenocephalus aceratus, with similar larval duration but displaying genetically structured populations, indicated a weak but significant bidirectional gene flow. Main conclusions Our results point to a relationship that is more complex than expected between potential for dispersal and realized gene flow in the marine environment. In addition to ocean circulation and larval dispersal, other major life‐history traits might be driving connectivity, particularly larval retention.  相似文献   

7.
    
The major subspecies group of the great tit, Parus major , has experienced demographic and spatial expansions during the last century in several sites at the edges of its distribution range. These expansions, although temporarily very even, have resulted in dissimilar patterns of molecular diversity. Populations locating at regions of contact to other subspecies groups (in Amur, Kirghizia–Kazakhstan, and Iran) show divergence from central population by nuclear and mitochondrial markers. In Amur, gene flow from minor group could be detected based on the existence of private minor alleles in the major population. In Kirghizia and Kazakhstan, the bokharensis and major groups share almost all the microsatellite alleles detected though frequencies differ. In Iran, three geographically close populations are distinct according to the mitochondrial sequences but also indications of present or recent admixture is detected. Populations, which have expanded to regions previously unoccupied by the species (northern UK and Finland), show divergence only by one of the markers. The variability in molecular differentiation may be due to dissimilar expansions, depending on whether the colonized regions have previously been occupied by another subspecies or not, on the amount of colonizing birds, and on the amount of past and present gene flow.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 201–210.  相似文献   

8.
    
Information on genetic variation and its distribution in tropical plant populations relies mainly on studies of ground‐rooted species, while genetic information of epiphytic plants is still limited. Particularly, the effect of forest successional condition on genetic diversity and structure of epiphytes is scanty in the literature. We evaluated the genetic variation and spatial genetic structure of the epiphytic bromeliad Guzmania monostachia (Bromeliaceae, Tillandsioideae) in montane secondary forest patches in Costa Rica. The sampling design included plants on the same trees (i.e., populations), populations within forest patches and patches within secondary forest at two different successional stages (early vs. mid‐succession). Six microsatellites revealed low levels of population genetic variation (A = 2.06, AE = 1.61, HE = 0.348), a marked deficiency of heterozygotes (HO = 0.031) and high inbreeding (f = 0.908). Genetic differentiation was negligible among populations within the same forest patch, but moderate (GST = 0.123 ± 0.043) among forest patches. Genetic relatedness between individuals was significantly higher for plants located within the same forest patch and separated by <60 m and decreased as distance between plants increased, becoming significantly negative at distances >400 m. An analysis of molecular variance (AMOVA) showed significant genetic variation between forest patches, but non‐significant variation between successional stages. The selfing breeding system and limited seed dispersal capabilities in G. monostachia could explain the observed levels and partitioning of genetic diversity at this geographic scale. However, these results also suggest that forest fragmentation is likely to influence the degree of local genetic structuring of epiphytic plants by limiting gene flow.  相似文献   

9.
The Landes de Gascogne forest (southwestern France) is the largest maritime pine ( Pinus pinaster ) plantation in Europe. Armillaria root disease ( Armillaria ostoyae ) has been reported since the early 1920s in the coastal area (western sector), but its incidence over the last 20 years has increased in the eastern sector. We investigated the genetic structure of the A. ostoyae population in this forest, focusing particularly on geographical differentiation potentially indicative of disease expansion in this area. In total, 531 isolates obtained from mycelial fans on symptomatic trees or undecayed stumps in 31 different disease foci were genotyped at five microsatellite loci. In 20 of these disease foci, a single genotype dominated, reflecting a predominantly clonal local spread of A. ostoyae . By contrast, at the regional scale, A. ostoyae probably spreads mostly via basidiospores (sexual spores), as no genotype common to several disease foci was identified. The absence of a clear pattern of isolation by distance may indicate either substantial gene flow or stochastic colonisation independent of spatial distance. The gradient of genetic diversity from the coast inwards and the greater genetic divergence of the eastern disease foci are consistent with the expansion of the A. ostoyae population from the coast eastwards.  相似文献   

10.
Since the 1920s, population geneticists have had measures that describe how genetic variation is distributed spatially within a species' geographical range. Modern genetic survey techniques frequently yield information on the evolutionary relationships among the alleles or haplotypes as well as information on allele frequencies and their spatial distributions. This evolutionary information is often expressed in the form of an estimated haplotype or allele tree. Traditional statistics of population structure, such as F statistics, do not make use of evolutionary genealogical information, so it is necessary to develop new statistical estimators and tests that explicitly incorporate information from the haplotype tree. One such technique is to use the haplotype tree to define a nested series of branches (clades), thereby allowing an evolutionary nested analysis of the spatial distribution of genetic variation. Such a nested analysis can be performed regarding the geographical sampling locations either as categorical or continuous variables (i.e. some measure of spatial distance). It is shown that such nested phylogeographical analyses have more power to detect geographical associations than traditional, nonhistorical analyses and, as a consequence, allow a broader range of gene-flow parameters to be estimated in a precise fashion. More importantly, such nested analyses can discriminate between phylogeographical associations due to recurrent but restricted gene flow vs. historical events operating at the population level (e.g. past fragmentation, colonization, or range expansion events). Restricted gene flow and historical events can be intertwined, and the cladistic analyses can reconstruct their temporal juxtapositions, thereby yielding great insight into both the evolutionary history and population structure of the species. Examples are given that illustrate these properties, concentrating on the detection of range expansion events.  相似文献   

11.
The population structure of the Atlantic walrus, Odobenus rosmarus rosmarus , was studied using 11 polymorphic microsatellites and restriction fragment length polymorphism detected in the NADH-dehydrogenase ND1, ND2 and ND3/4 segments in mtDNA. A total of 105 walrus samples were analysed from northwest (NW) Greenland, east (E) Greenland, Svalbard and Franz Joseph Land. Two of the 10 haplotypes detected in the four samples were diagnostic for the NW Greenland sample, which implied that the group of walruses in this area is evolutionary distinct from walruses in the other three areas. One individual sampled in E Greenland exhibited a Pacific haplotype, which proved a connection between the Pacific walrus and walruses in eastern Greenland. The Franz Joseph Land, Svalbard and E Greenland samples shared the most common haplotype, indicating very little differentiation at the mtDNA level. Gene flow ( Nm ) estimates among the four areas indicated a very restricted exchange of female genes between NW Greenland and the more eastern Atlantic Arctic samples, and a closer relationship between the three samples composing the eastern Atlantic Arctic. The genetic variation at 11 polymorphic microsatellite loci grouped individuals into three populations, NW Greenland, E Greenland and a common Franz Joseph Land–Svalbard population, which were connected by moderate gene flow.  相似文献   

12.
We developed seven novel polymorphic microsatellite loci for the aquatic macrophyte Sparganium emersum (Sparganiaceae). These were characterized on 62 individuals collected from nine different populations. In this set of individuals, seven to 20 alleles per locus were detected and observed heterozygosity ranged between 0.16 and 0.95. Cross‐species amplification was tested in the related species Sparganium erectum, and was successful for five of the seven microsatellite loci.  相似文献   

13.
The genetic population structure of the bumble bee Bombus pascuorum was studied using six microsatellite loci and a partial sequence of the mitochondrial gene cytochrome b . Eighteen populations from central and northern Europe were included in the analysis. Observed levels of genetic variability and heterozygosity were high. Estimates of population differentiation based on F - and Φ-statistics revealed significant genetic differentiation among B. pascuorum populations and suggest that two partially isolated gene pools, separated by the Alps, do exist. The distribution of mtDNA haplotypes supports this view and presents direct evidence for gene flow across the Alps. Estimates of the number of migrants exchanged among populations north of the Alps suggest that historical events may have left a strong imprint on population structure.  相似文献   

14.
    
In the 19th century, the red deer (Cervus elaphus) population in Sweden experienced a rapid decline in numbers and distribution. A small population was, however, remnant in the southernmost province (Skåne) of the country, presumably corresponding to the nominate form of red deer (Cervus elaphus elaphus Linnaeus, 1758). After management, reintroductions, and supplementary release during the 20th century the Swedish C. elaphus population recovered. The recovery was partially uncontrolled, and included introductions of C. elaphus of continental origin. In northern central Sweden (Jämtland) the current C. elaphus population may stem from natural colonization from Norway and/or from specimens of Swedish origin that have escaped from enclosures. To evaluate the status of the current, partially separated populations, we investigated variation at microsatellite markers in 157 C. elaphus specimens from ten locations in Sweden and Norway. Analyses suggest that the highest‐likelihood phylogenetic structure among the individuals sampled is described four distinct genetic clusters: (1) animals from the province of Västergötland in south‐western Sweden; (2) deer from the southernmost province of Skåne; (3) deer from the provinces Jämtland, Blekinge, and Västmanland; and (4) Norwegian deer. Cervus elaphus from a captive herd at the Skåne Zoo cluster with deer from Skåne or deer from Västergötland, depending on the method of analysis. A number of populations in Sweden may genetically match the nominate form of red deer (C. e. elaphus). The recently established C. elaphus population in Jämtland seems to stem mainly from escapees from enclosures, with a mixed ancestry from the wild remnant population in Skåne and continental deer, whereas the influx from Norway is minor, if any. Our results show the need for a detailed assessment of genetic differentiation, and emphasize the value of local management plans when planning and managing introductions. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 43–53.  相似文献   

15.
    
The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch ( Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 746–758.  相似文献   

16.
As a consequence of postglacial range expansion, hybrid zones evolved where different genetic lineages met. In this study, we analysed the Chalk‐hill Blue Polyommatus coridon all along the contact zone of two expansive lineages. This zone stretches from the sandy areas of north‐eastern Germany, along the mountain ranges of the German–Czech border and throughout the eastern Alps. We studied allozymes (19 loci) of 38 populations (1542 individuals) and compared these data sets against 15 populations of the western and 15 populations of the eastern lineages and found different degrees of hybridization. Thus, the calcareous regions of Thuringia and Sachsen‐Anhalt were mostly colonized by the western lineage. The middle mountain ranges between Bavaria and Bohemia represented a strong barrier blocking further expansion and thus completely impeding hybridization in this region. More intense hybridization was detected in the populations of the eastern Alps, especially in the north‐eastern part, where the Danube most probably acted as an expansion corridor for both lineages followed by intensive hybridization. In the south‐eastern Alps, hybrid populations were mostly detected in the easternmost parts and along the larger river valley of Drava and Mur; pure western populations dominated in the other areas of this region. These results show that the degree of hybridization along a contact zone is correlated with the ecological demands of a species and the regional physical geographic circumstances. This finding was proved for the Chalk‐hill Blue in our study but is also the most likely scenario in most animal and plant species.  相似文献   

17.
Gaps in the large-scale distribution of the tephritid fly Urophora cardui in Europe have been explained as the results of an ongoing re-immigration from Pleistocene refugia due to a very low dispersal capacity. Following evidence of a much greater dispersal capacity of U. cardui than previously assumed, the pattern of genetic differentiation of 41 populations from 16 European regions was studied using allozyme electrophoresis. In these analyses 18 enzyme systems were scored consistently providing 27 alleles. Allozyme variation indicated high gene flow and low levels of genetic differentiation within and between sampling regions as well as in recently colonized areas. No geographical pattern of heterozygosity or allozyme differentiation could be found matching the previously suggested recent immigration pattern. An observed south-north gradient in allozyme frequencies was interpreted as a geographical cline due to environmental factors. The results corroborate evidence from more recent studies that U. cardui is a highly mobile species which is likely to have repeatedly colonized some suboptimal European regions since the Pleistocene after retreats during 'little ice ages'. Patterns resulting from postglacial immigration processes are likely to have been long wiped out through high exchange rates.  相似文献   

18.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

19.
    
Microsatellite variation was determined for three Danish and three Dutch populations of the haploid moss species Polytrichum formosum to gain insight into the relative importance of sexual vs. asexual reproduction for the amount and structure of genetic variation. In general, low levels of microsatellite variation were observed within this species. Even when estimated for polymorphic loci only, the levels of microsatellite variability (P=90.6, A=4.3 and HS=0.468) within populations were on average lower than those reported for most other plant species. In contrast, genotypic diversity was high within each of the examined populations, indicating that sexual reproduction is a very important determinant of the genetic structure of P. formosum within populations. In agreement with previous findings for allozyme data, no significant genetic differentiation (FST=0.028, RST=0.015) was observed neither between populations nor between regions approximately 450 km apart (Denmark vs. the Netherlands). These low levels of population differentiation observed for both types of genetic markers are probably best explained by a high level of effective spore dispersal (gene flow) between populations. Therefore, also on a large geographical scale sexual reproduction is the most important determinant of the genetic structure of P. formosum, despite the high potential to reproduce clonally.  相似文献   

20.
  总被引:4,自引:0,他引:4  
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号